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ABSTRACT -

Many coastal states, and in particular North Carolina, have had
to address the problem of the effects of coastal sediments having
been transported, usually under severe oceanic and atmospheric storm
conditions. Typically, the states address such problems only after
(or during) a catastrophe has {or is) occurred {occurring). This is
an attempt at delving into one small aspect of the overall study of
understanding the physics governing the transport of coastal sediments
and of the interactive effects between the oceanic fluid and sediment
media.

The problem of a small-amplitude wave propagating over a flat

porous bed is reanalyzed subject to the bottom boundary condition,

where u represents the horizontal velocity in the fluid, US represents

the horizontal velocity within the bed as predicted by Darcy's law, K is
the permeability and the subscript "o" denotes evaluation at the bottom,

z = 0. The term, o, is a constant whose value depends on the porosity of
the bed at the interface and must be determined experimentally. The
boundary condition is of the form of a "radiation-type" condition commonly

encountered in heat conduction problems.



The important physical quantities (velocity, velocity potential,
stream functions, shear stress and energy dissipation) have been
derived and are presented, subject to natural conditions. The bottom
boundary layer is represented by the linearized Navier-Stokes equations
under the usual boundary layer approximations. It is found that the
boundary layer velocity distribution and shear stress can be greatly
altered from impermeable bed predictions. Theoretical results for
energy dissipation and shear stress are compared to existing data and
are found to agree very well. The predictions of classical small
amplitude wave theory are not appreciably modified away from the

boundary.
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1 INTRODUCTION

1.1 Purpose

As ocean waves propagate away from their generation areas, they
eventually encounter the coastal zcone and, subsequently, sediments which
constitute a loose bottom boundary to the wave motion. Seaward of the
coastal zone, modifications of the propagating waves have been due to
interactions with other surface waves, surface currents, internal waves,
viscous and turbulent energy dissipation, and continued interacticn with
the atmosphere. Since the water is initially "deep," i.e., depth/wave-
length > 1/2, the wave group is dispersive {meaning the phase speed de-
pends on the wave length}. The longest waves, called forerunners, en-
counter the "shallow" water (% <-%5) first because they travel faster
and induce deeper fluid motions. Komar et al. {1972) bave
photographed deep-water oscillatory ripple marks off the Oregon coast
at depths of 200 meters. It is therefore quite possible for a wave to
have considerable interpiay with the bottom before reaching the beach.
This is especially true along wide continental shelves. F-um this point
of view, the wave-bottom interaction becomes of great practical importance
to the activities of man. The design of coastal structures and port fa-
cilities as well as the management of navigable waterways are functions
of predicted wave parameters and sediment transport.

The study of waves propagating over a porous, erodible ted has only
in recent years raceived more than passing attention by the scientific
community (see Figure 1.1). Meanwhile, the associated phenomenon of uni-

form flow over loose boundaries has received serious attention for over
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two centuries, although description of either the flow field or the bed
configuration, whether analytic or descriptive, remains incomplete {Jain
and Kennedy, 1974; McQuivey, 1973), as does determination of the resulting
sediment transport (Yalin, 1972). No doubt the physics of the wave assoc-
iated problem is becoming better understood due to recent technological
advances in instrumentation and data analysis, but until a better under-
standing of turbulence and sediment mechanics is obtained, predictive
capability will remain only qualitative. The key to a more compliete
understanding will be in the thorough knowledge of the boundary layer

flow since all of the important parameters (flow fields, shear stress
distribution, boundary layer velocity profile and energy dissipation)

are functionally dependent on the dynamic character of this layer.

The purpose of this work is to investigate porous bed effects and
their relative importance upon an Airy wave in "intermediate" (.05 <
d/L<.5) and “shallow"” water depths. Particular attention is directed
towards the bottom boundary condition to be used, because it will have
significant effects on the wave and bed flow properties, especially in
the boundary layer. A large number of assumptions are made which limit
practical application to a certain extent, but judicious deletion of par-
ticular terms in the equations of motion allow analytic solution of the
coupled problem and clarifies the influence of the boundary condition.

It is appropriate to dicuss the assumptions as listed in Table 1.1
and to present results of other investigations which shed Tight on the
credence of the approximations. The following sections will serve this
purpose, along with an introduction to the wave theory which will be

used,



Table 1.1

List of assumptions

On the nature of the fluid

1. Incompressibie
2. Small viscosity
3. Homogeneous

Nature of the environment

No atmospheric interaction

No currents

Irrotational motion above boundary layer
Nonsloping bottom

Smooth interface

G B W N -
LI B D D ]

Wave theory seléction

1. Airy or Small Amplitude Wave Theory

Nature of the bottom flow regime and boundary
layer equations

1. Laminar
2. Linearized

Nature of the porous bed and flow

1. Statistically homogeneous
2. Darcy's law applicable




1.2 Nature of the Fluid

The problem includes, in effect, a multi-phase fluid. The princi-
ple component under consideration is sea water. Of the assumptions made,
those concerning the sea water phase are the most exact. It is common
practice to regard it as incompressible, although it is compressible to
a small extent. It has been estimated that if water were truly incompres-
sible, the sea would rise by more than 30 meters. The mean compressibility
is a function of the temperature, salinity and in situ pressure, but its
value 1ies in the neighborhood of 4.3 x 1073 rn2 /Newton for the surface
layer. This places the speed of sound in the vicinity of 1.5 x 103 m/sec
and therefore the Mach number is bound to be very small. Thus, as far as
particle dynamics are concerned the fluid is incompressible, i.e., the
volume of a control velume is assumed pressure independent {Lighthill,
1963).

Water can be considered inviscid except near a boundary. S$ince we
are not considering situations where high concentrations of suspended
sediment exist, such as in turbidity currents, the fluid is assumed New-

tonian and has a molecular viscosity of the order of 10'2

gr/cmesec,

As will be shown in the discussion of the laminar boundary Tayer, vis-

cous effects are limited to a region only a few centimeters in thickness.
The density of sea water rarely fluctuates by more than 5 percent

of its mean value with a few notable exceptions, such as the Red Sea,

where hypersaline layers exist. Strong thermoclines are characteristic

of the Red Sea and can occur within the depth range of surface influence.

Generally, density variations can be important in studying large-scaie



thermohaline circulation and internal wave phenomena, but herein the

effects of variability in the density field will be neglected.

1.3 Nature of the Environment

Air-sea interaction will not be considered in this development.
Additionaily, even though it is known that surface tension is important
to momentum transport across the surface interface via capillary and
capillary-gravity waves, it will be assumed that waves of these order
wave lengths are of no significance to bottom interactions.

On the other hand, currents can be significant near the bottom.
Strong currents are commonly encountered in the near-shore zone and along
the continental shelf and slope. Tidal inlets and estuary mouths can
greatly modify incoming waves in localized areas (Boone, 1974). Usually
variable depths should be considered in these locations since large ebb
deltas can be present. Waves can also induce nearshore currents called
rip currents and longshore currents. Western boundary currents, such as
the Gulf Stream, can produce considerable modification of the wave field.
These currents usually appear seaward of the shelf break, but “spin-of*"
eddies and "shingles" occasionally occur and advect across the shel{ re-
sulting in considerable mixing and nutrient influx. However, eddies are
secondary sources of currents compared to wind-driven circulation which
s generally present and can, during storms, be considerable, i.e., 1 m/sec,
in magnitude. Under such conditions, the surface displacement will be more
random than monochromatic, with considerable breaking of the waves being
present. Although the sea state is important, our primary objective is

to understand the boundary layer., Therefore, using one component will be



sufficient. The result can be géneralized to complicated combinations
of wave components without additional difficulty in principle. Also,
since conditions on the shelf which would initiate significant currents
with respect to the wave motion result in several poorly understood phe-
nomena, currents on the shelf will not be considered and the theory
developed herein will simply not be valid near strong nearshore currents.
The next assumption, that of nonsloping bottom, is reasonably true
since the average shelf slope is of the order of 0.1° . Of course,
rapid depth changes do occur in the vicinity of shoals, nearshore bars,
and the beach. These are usually connected with wave breaking and are
rather localized topographical features and therefore will not be con-
sidered. Radwan et al. (1975) have obtained semi-closed form
solutions for small-amplitude waves in currents over slowly varying bot-
tom depths. Boundary layer considerations were not included in their work.
In conclusion, although the author recognizes that the atmosphere,
depth and currents can have important effects, to consider them would
lead this investigation astray from its specified purpose. Discussion
of irrotationality will be included in section 1.4 and the smooth and

stationary interface assumptions will be included in section 1.5,

1.4 Wave Theory

Under the assumptions of section 1.2 and considerations of section
1.3, the equations governing the flow in the main body of fluid reduce
to the two-dimensional Bernoulli and continuity equations and a state-
ment of irrotationality, According to Kelvin's circulation theorem,
irrotationality can be assumed if the wave propagates into an initially

irrotational volume of fluid.



u +t{u-9)u+¥p/o+gz=0 (1.1)

Veu=20, ¥yxu =20 (1.2, 1.3)

where u = (U, W), ¥ = (3/3x, 3/3z) and underscored quantities are
vectors. The appropriate boundary conditions at the surface, z =n + d,

d being the mean water depth,

are ng+Umn, =W (kinematic) (1.4}
i ,.2 2 _ . :
and ¢ + §'(¢x + ¢Z) +gz=20 {dynamic) {1.5)
where U = oy and W = ¢, - At the bottom, 2z = 0 , the impermeable
condition is
W, =0, (1.6)

Of course, this condition will be altered in this paper, but it is assumed
in the theories discussed below. The exact solution of these equations
has been obtained only in special cases and an approximation method must
be employed in other cases.

There are over a dozen wave theories in existence (see LeMehaute,

t al., 1968). Each has a limited range of application for val-

ues of a/d, a/L, and d/L (see Figure 1.2}, where a, d, and L are the
ampiitude, depth, and wavelength, respectively. The large number of
theories stem from the approximations made regarding the relative sizes
of these three parameters and the manner in which the solution is derived.
The solution is obtained in one of two ways as decribed by Dean and

Eagleson (1966). The first is a perturbation of the solution (Stokes
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waves), and the second is a perturbation of both the solution and the
governing equations {cnoidal waves ). Solitary waves are occasionally
thought of as being in a separate class, but Peregrine {1972} points
out that they are cnoﬁda1 waves of infinite wavelength.

The perturbation scheme is employed using one of the above ratios
as the expansion parameter and the result will be valid for various
ranges of the other two. The ranges of validity of such solutions have
been investigated by Keulegan (1950) and Laitone (1962), but the exact
limits of vaIidjty are not well established. The most generally used
theory is Stokian mainly because of its ease of application, especially
the first-order solution {commonly called Airy, or small-amplitude wave
theory). Higher-order Stokes and cnoidal results can be obtained from
tables (Skjelbreia, 1959; Masch, 1961), and LeMehauts et al. (1968) com-
pared twelve wave theories and found the cnoidal theory of Keulegan and
Patterson (1940) to perform the best under conditions usually encountered
in site-specific engineering problems.

First-order Stokian theory is valid for all values of d/L since
it assumes both a/L and a/d to be small while higher-order Stokes
theories are valid in deep water when a/L 1is finite (see Figure 1.2).
Because of its uniform validity for all d/L and its simplicity, it is

used in this paper,

1.5 Nature of the Bottom Flow Regime

Boundary roughness, bed mobility, and the flow regime at the bottom

are all interdependent and are discussed together. The theory developed
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herein assumes a smooth, stationary bed with a 1inearized boundary
layer. The boundary condition for a mobile, saltating bed has not been
developed and any theory developed so far is limited by the threshold
conditions.

As mentioned previously, potential flow is used and therefore no
boundary condition on U , the horizontal velocity component, can be
satisfied at the bottom. Thus a slip condition exists, i.e., U assumes
an unrealistic value at the bottom. A1l fluids are viscous and while
viscous effects may not be important in the main body of our fluid, its
effect near the interface is very important for a number of reasons.
First, viscous forces near the interface are the most important source
of energy dissipation in shallow water waves. Secondly, the tangential
stress due to viscosity initiates sediment motion and, along with mass
transport, causes sediment transport. The term mass transport should
not be confused with sediment transport. Mass transport refers to the
mean Lagrangian displacement of fluid particles over a wave period and
is sometimes referred to as the wave entrainment current. Mass trans-
port also results from inertial effects appearing in the second-order
Stokian theory. The topic has been discussed by Lonquet-Higgins {1958}
and more recently by Huang (1970) for a linearized Taminar boundary layer.
Sleath (1968) has noted that a porous bed enhances mass transport.

If the flow regime is taken to be laminar, the validity of assuming
a linearized laminar boundary layer has been questioned by Grosch {1962),
Iwagaki et al. (1967}, and Teleki (1972). Grosch and Iwa-
gaki et al., using different methods of solution, concluded that non-

linear effects in a laminar boundary layer in the presence of an Airy
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wave have little effect on energy dissipation or on the magnitude of the
bottom shear stress, 1, = uazu/azzl0 . However, Teleki found that in-

clusion of the nonlinear terms resulted in the phase lag between Ty and

the external driving velocity decreasing from =n/4 to mw/6 . The direct

measurement of wave shear stresses has been undertaken by Eagleson {1962)

and Iwagaki et al. (1965) for smooth bottoms using shear plates and torque
gages with the latter group making considerable improvement in instrumen-

tation.

The next question to arise concerns the conditions under which the
boundary layer can be assumed to be Taminmar. This involves surface rough-
ness as well as the Reynolds number. Experiments by Vincent (1957) and
Collins (1963) indicate that wave tank boundary layers over smooth bot-
toms will almost always be laminar, whereas prototype shallow water waves
will have turbulent boundary layers. This points out the well~known
scaling problem of wave tanks., For this reason, Jonsson (1963) and Riedel
et al. (1972) have used oscillating water tunnels for measuring velocity
profiles and shear stresses, respectively, in oscillating flows under
prototype congitions. The criterion developed by Collins is an/u = 160 ,
which is nearly 1/4 that proposed by Li (1954) who used a smooth oscillating
bottom. & is the boundary layer thickness. Their methods of determining
transition flow were quite different; Collins used measurements of mass
transport and Li used dyes. However, Li's results were biased by the fact
that the dyes were more dense than the surrounding fluid. Kalkanis (1957)
reperformed the experiments on a smooth bottom using dyes of specific
gravity 1.0 and showed that turbulence occurred at lower Reynolds numbers

than found by Li, a result more consistent with those of Vincent and Col-
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lins. Kalkanis also developed semi-empirical equations for the velocity
profile.

When the bottom is rough, the critical Reynolds number will be lower.
If the roughness length is a fractional value of the boundary layer thick-
ness, the interface is called "hydrodynamically smooth;" if it is not, it
is called "hydrodynamically rough." Criteria for these terms were con-
sidered in detail by Li {1954} and Manohar (1955), who obtained the same
results which are shown below along with determinations for critical Reyn-
olds numbers, as given by Einstein (1972). The data cited by Einstein
included flow over rigid, artificial ripples for linear (two-dimensional)
and irregular (three-dimensional) featured cases. (See Table 1.2).

The term “rough" also includes consideration of bed forms. Early
studies on the initiation of sediment motion and bed form growth were
conducted by Bagnold (1946), and by Manchar (1955}, in oscillating tanks.
The bed is always made smooth, i.e., void of bed forms, when studying
thresholds of sediment motion. Bed forms are the result of such motions.
Bagnold's results were used by Putnam and Johnson (1949) to estimate wave
attenuation due to bottom friction. Savage (1953) performed wave tank
experiments on energy losses due to bottom friction over smooth and rip-
pled surfaces and also losses due to bed percolation. He found that
energy was expended most rapidly while the bed was aftaining its equi-
1ibrium configuration. Once the bed becomes unstable, the boundary con-
dition becomes more complex and the boundary layer will be greatly af-
fected. It is therefore rather.important to understand when bed motion

will begin.
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Table 1.2 Criteria for roughness and flow regime

Smooth Boundary 6/20 > 6.54

Transition 4.02 < 6/20 < 6.54

Rough Boundary 6/20 < 4.02

where 2z = roughness length and
¢ = boundary layer thickness = 6.5/~77
.2 - 5

Rec =ago/v=1,7-+10 smooath boundary
ReC = zoaa/v = 540, 2-D roughness, a/z0 < 266

104, 3-D roughness, a/z0 < 1630

where a = excursion amplitude of bottom plate and

ReC = critical Reynold's number

Comment: Other definitions of § are used in the literature, most

commonly § = YZV/5 .
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Eagleson and Dean (1959) reviewed earlier work performed by them-
selves and by others on discrete particle motions on roughened slapes.
More recently Komar and Miller (1974) reviewed existing data on the sub-
ject, especially that due to Bagnold (1946),\Manohar (1955), and Rance
and Warren {1968). They derived the following empirical expressions for

two domains of grain diameters;

[
1/2
0.21 (do[D) ; D < .05 ¢m (1.7}
2 -
pU /(g -p)gD = J or
0.46 (d /0)"/* ; b > .05 cm (1.8)
\

where Uo is the external velocity = ao/sinhkd , d0 is the particle
excursion ]ength at the bottom, d = water depth, and D 1is the sediment
diameter. For prototype waves, grain diam:ters less than .05 cm (medium
and fine sands) will be set in motion while the flow regime is Taminar.
They also noted that as the wave period increases, the critical value of
U0 also increases.

The development of bed forms is accomps1ied by "separation." Separa-
tion means that the flow becomes detached from the boundary and is a re-
sult of energy dissipation in the boundary layer. Separation of the flow
along a curved boundary occurs when the deceleration of the flow necessary
to maintain contact with the boundary exceeds the energy available to pro-
duce such a bending of the streamlines (Rouse, 1938). When separation oc-
curs such that the eddy sizes are comparable to the boundary Tayer thick-
ness, the flow must be considered turbulent. Jonsson (1966) has prepared
a series of diagrams using existing data from which the friction factor,

flow regime and boundary layer thickness can be determined for wave motions.
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The effect of porous bed forms on uniform flows is just beginning
to be studied. Ho and Gelhar (1975, 1974) conducted theoretical and
experimental investigations for turbulent pipe flow with such a boundary.
They concluded that the seepage flow in the bed can have significant in-
fluence on the external flow and therefore on the form resistance.

Theoretical consideration of turbulent flow regimes under waves is
essentially limited to two papers by Kajiura {1964, 1968). In the first
paper, bottom friction is studied under the assumption that the eddy vis-
cosity coefficient is proportional to the amplitude of the bottom friction
velocity and the height above the bottom, Kz =k (z+zo)u; where 2, is
the roughness length, k” is von Karman's constant and u; is the fric-
tion velocity. His results were utilized by Horikawa and Watanabe (1967)
to aid in the prediction of the critical water depth for sediment motion.
They found this approach more suitable than the previous approach which
assumed the boundary layer always to be laminar and the frictional law
for steady flow to remain applicable. In oscillatory flow, the friction
coefficient assumes a dependence upon the phase difference between the

external flow and the bottom shear stress.
Ce = n1 /(oUz) (1.9)
f o 0 ’

where n must be determined experimentally.

In his second paper Kajiura introduces a more sophisticated model
in which he breaks the boundary layer into three regions (inner, overlap,
and outer) just as in steady turbulent flow (see Figure 1.3). Values of
KZ are assumed for each region and the solutions for each section are

matched. He also defined "smooth" and "rough," (see Figure 1.3). Hori-
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kawa and Watanabe (1968) compared Kajiura's results to laboratory re-
sults of their own and of Jonsson (1963). They concluded that Kajiura's
values of K# are not always valid and that once eddies form the neglect
of the vertical velocity in the boundary layer equation is not a valid
assumption. As yet, no other turbulence model for this type of flow

has been advanced. Teleki and Anderson (1970) compared experimental
measurements of Cf%tO'the Cfia35umed by Kajiura and found n=1/2 to

give the best fit.

Two other important comments must be made with regard to the boundary
Tayer. Extensive laboratory tests have been made to measure wave attenua-
tion for a smooth impermeable bottom. The findings of Grosch and Lukasik
(1960), Eagleson (1962), Lukasik and Grosch (1963), and Iwagaki et al.
(1967) indicate large discrepancies between measured and theoretical val-
ues of the attenuation constant, vy , even when theoretical side wall and
surface tension effects are included. A1l their tests were within the do-
main of Stokian theory and under Taminar conditions. Treloar and Brebner
{1974) recently developed a procedure for measuring the side-wall contribu-
tion and found it could be predicted very well. However, they were not
able to explain the fact that bottom losses are greater than theory pre-
dicts by a factor of i.3.

The last comment concerns the continuing argument as to whether or
not oscillating bed studies are a relevant means of studying bed forms
and related flows. Einstein (1972), for one, maintains that they are
relevant, while, on the other hand, Tunstall and Inman {1975) hold that

they are not. Tunstall’'s data indicated that the pressure gradient field
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is very important to eddy formation and therefore to the flow regime. A
very good review article on the toﬁic of wave boundary layers with re-
spect to sediment transport has been written by Teleki (1972).

This section has been a discussion of three intertwined assumptions.
These are that the boundary is smooth and stationary and that the flow
is laminar and being so can be linearized. If the bed is nonrippled, the
boundary will be hydrodynamically smooth for most beach and shelf sands.
The roughness length will be some fraction of the grain size. Coarse sand
has a maximum grain diameter of 1 mm. Therefore the minimum boundary layer
thickness must be about 6 mm. A wave having a period more than 5 sec. meets
this requirement and as T increases so will the value of & . Most
prototype waves of interest do have periods greater than 5 sec, The main
justification of assuming a laminar oscillatory boundary layer is simply
because too Tittle is known about turbulence at the present time to in-
clude it. As commented earlier, the flow regime is most likely to be tur-
bulent under prototype conditions when sediment motion is initiated for beds
coarser than medium sand; in this case, assuming a stationary bed is con-
sisteni to a laminar boundary Tayer in the real world, although it may not
be true in the laboratory. For beds finer than coarse sand, motion will
occur under laminar conditions, but the boundary condition for a mobile bed
with various degrees of sediment motion is not known and any theory, whether
turbulent or laminar, is bound to be invalid when the threshold is reached.
Thus we are Timited to a laminar boundary layer over a stationary bed. Al-
so, if we are limited to a laminar boundary layer, indications are that

neglect of the nonlinear terms causes little error.
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1.6 Porous Bed Flow

Darcy's empirical Taw is taken as the governing equation within the
sediment layer. It was obtained during the 1850's by French hydrologist
Henry Darcy while studying the water supply of Dijon, France. It can be

written in its more general form as

¥ (pg - p9z) . - (1.10)

~|—
¢L= ¢
r|—

e 1{s the porosity, K is the specific permeability, and -Es is the
seepage velocity. ﬁs represents a mean flow rate through an infinites-
mal area and is not a discrete fluid particle velocity. Porpsity is
simply the ratio of pore volume to total volume. The specific permeability
is a proportionality constant. Its value will depend on the poraosity some-
what, but more importantly on how the pores are connected and how uniformly
they are dispersed. A vast number of papers have been written on applica-
tions, limitations and extensions of this equation. It assumes that the
fluid is homogeneous and that the porous medium is statistically homogeneous.
Darcy assumed a linearized friction term which is fine for "slow" flows
(see Table 1.3). Quadratic friction terms have been used for greater flow
rates. Information given by Zaslavskii et al. (1968) for porous flows ap-
pears in Table 1.3. Therefore, one must be careful not to over-extend re-
sults obtained from this theory. The time dependent term can usually be
eliminated for most natural conditions since K is 0(10'5) or less and
the porosity is generally 0.4 to 0.5.
With the exception of Savage (1953), most notable works have neglected

percolation effects. Vincent (1957) noted that porosity facilitated the

the onset of turbulence when grain sizes were greater than 0.24 mm.
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Table 1.3 Porous bed flow

1 < ﬂs B/v < 10 validity of Darcy's law
Eis D/v < 100 laminar flow
" > 150 turbulent flow

10 < " < 100 quadratic flow law

where D = grain diameter

Putnam (1949) published the first paper on energy dissipation due
to percolation and his results were corrected by Reid and Kajiura (1957).
Putnam had neglected the bottom layer. Several other porous bed theories
on energy dissipation which include the boundary layer are by Hunt (1959),
Murray (1965}, and Liu (1973). Each approach is different in that all use
different matching conditions at the interface. Their results will be
given in more detail later. Whether or not percolation will be an impor-
tant source of dissipation depends on the depth to wave length ratio, the
thickness of the bed, and the bed material. Reid and Kajiura {1957) have
shown that percolation effects are the greatest for intermediate waves.
In this range, the bottom pressure gradient will have its greatest values
and therefore induce the Targest seepage flows.

Millikan, et al. (1972) have explored the sediments on the
eastern U. S. continental shelf and found mostly medium to coarse sands
(.25 mm < D <1 mm). Typically, the sand on the beach will not be the

same as found on the shelf. Wave sorting and past geclogical history of
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the region prevent uniformity. However, sufficiently large tracts are
statistically homogeneous and allow us to consider the porosity and per-
meability to be constant. As the wave approaches the beach, the values
of &€ and K may be adjusted.

The east coast shelf is notably wide especially in the Georges Bank
area off New England (over 400 km). The shelf break is seldom more than
60 m deep south of Cape Hatteras and 120 to 160 m north of Hatteras. As
for the bed depth, seismic work and sediment coring on the Cape Kennedy
inner shelf by Field et al. (1971) and Field and Duane (1972} show the
bad depth to.be highly variable there and having maximum thicknesses in
the neighborhood of 40 feet. These facts indicate that waves are quite
capable of transporting bottom material on this shelf when the previous-
ly discussed work of Komar et al. (1972) is considered. This is borne
out in another report (Pilkey and Field, 1972), where observations are
presented which indicate onshore transport of shelf sediments.

Field and taboratory experiments on porous bed effects are rare. To
the author's knowledge, only one field test on wave attenuation has been
published. Unfortunately, it was done in the Gulf of Mexico at a loca-
tion where the bottom was cohesive mud and percolation was not a factor
(Bretschneider, 1954). He believed the bottom to be somewhat
fluidized by the wave action resulting in an elastic layer along the bot-
tom. Savage {1953) has measured energy loss due to percolation in a wave
tank, and Sleath (1970) has taken wave-induced pressure measurerents with-

in a stratified bed, also in a wave tank. Ffield measurements of seepage
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velocities in the surf zone have been achieved by Reidl and Machan1

using hot thermister probes.

Recent geological research off the eastern and western U. S. sea-
boards has shown that significant shelf sediment transport occurs and
that the shelf material is sufficiently coarse for percolation to be a
factor in wave attenuation and to the boundary layer structure. Findings
also indicate that the material is rather constant over large areas, justi-
fying the use of a single value of K for both horizontal and vertical
directions.

In the next section, a more detailed analysis of the above mentioned

wave-porous bed models will be given.

1Riedl, R. J., R. Machan, "Hydraulic Patterns in Lotic Intertidal
sands," (unpublished). Institute of Marine Science, Morehead City,
North Carolina, 1971, 71 p.



2  LITERATURE REVIEW

2.1 Initiz]l Comments

In this section a review of the existing papers on wave-porous bed
interactions will be made. Also, papers dealing with the “radiation-
type" boundary condition utilized in this report will be discussed.

A1l of the porous bed models &ssume small amplitude wave theory or
simply small amplitude motions and Darcy's law. The distinguishing
feature is the manner in which the flows are coupled. The large-scale
properties, i.e., streamliine pattern, will not be greatly affected by
the flow matching conditions since the pressure distribution will remain
fairly independent of flow near the interface where viscous effects are
very strong (but laminar}. As for the flow near the fluid-bed interface,
the matching conditions are important and the theories will always dis-
agree in this region. Of particular importance is the shear stress, T .

A1l the theories neglect all other types of interactions and there-
fore are subject tc the limitations described in Chapter 1. Some include
a damped amplitude, but others assume the ampiitude loss over a wave-

length to be negligible and thus take it to have a constant magnitude.

2.2 MWave-Porous Bed Models

Putnam (1949} published the first paper on this topic. He was not
interested in boundary layer effects in this publication since he and
Johnson {Putnam and Johnson, 1949) had already published a separate
study on energy losses due to bottom friction. The purpose was merely
to obtain an estimate of the energy loss due to the induced seepage flow.

To accomplish this, he assumed both flows to be governed by Laplace's
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equation, took the external flow to be the classical small-amplitude
wave theory and solved for ¢s » the velocity potential in the bed,

using these conditions:

¢ = gH coshkd z=10 (2.1)

and

(85), = 0 2= - (2.2)

where ¢. =gz +p/p , d is the mean water depth, and H = wave height.
The subscript 's' denotes a bed quantity and the subscript 'z' indi-
cates differentiation with respect to the 2z coordinate. HNo viscous
boundary layer is included and the external wave flow is independent of
the bed flow, i.e., an uncoupled system. There is an error in equation
{2.1). A divisor of 2 is missing in the denominator. This results in

an overestimation of the percolation losses by a factor of four., Savage
(1953) Tater noted a discrepancy when he compared experimental attenuation
to that predicted by Putnam. The average rate of dissipation per unit
length and crest width is obtained by integrating the dot product of the
viscous force, vﬁS/K , and the flow velocity, ﬂs , over the bed thick-
ness and the wavelength and then dividing by L.

Putnam numerically approximated the amplitude attenuation of various
waves on various bottom slopes between the points d/L = 1/2 and the
breaker zone. For example, on fairly flat beaches (slope 1/300}, (ai-af)
/ai = 10% for a 12 sec. wave. The subscripts 'i' and 'f’ denote
initial and final values, respectively. This decrease in amplitude seems

rather small, but it must be remembered that waves traveling in water of
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shallowing depth experience a monotonic decrease in wavelength. At the
same time a monotonic increase in amplitude results once the wave enters
shallow water. Had he calculated the amplitude difference on a nonsloping
bottom, the percentage would have been higher, especially for intermediate
depths. Also, he made another error (his eq. 18) which Ted him to an er-
roneous evaluation of the effect of bed depth. This error was found by
Savage but the initial error was not found and corrected until 1957. 1In
the meantime, his results were used and expanded by others, most notably
Bretschneider and Reid (1954).

Reid and Kajiura (1957) finally recognized Putnam's most major mis-
take and made three improvements. (1) They coupled the flow regimes,
both of which were potential flows again, with no boundary layer, (2)
they included a damped free surface elevation n = aie_Yt+ix , where vy -
is the attenuation coefficient and (3} they included the time dependent
acceleration term in Darcy's law. The matching conditions at the bottom

were

P=pg and W =w, z2=0 (2.3)

i.e., continuous pressure and vertical velocity. The vertical velocity
is zero at some finit2 bed depth. This approach, as with Putnam's, re-
sults in a discontinuous horizontal velocity at z =.0. Their method of
calculating the average energy 10ss per unit time is to integrate the dot
product of Py and w, over a period and divide by T. Several inter-
esting phenomena resulted from the bed being porous. As with Putnam,

the percolation has a negligible effect on wave length, phase speed, and

group velocity. In addition, the maximum energy loss occurs at the rela-
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tive depth of d/L = 0.13, which indicates waves of intermediate wave-
lengths ( or period) are attenuated at the highest rate by the seepage
flow. The reason is that these waves induce the greatest pressure gra-
dients at the bottom. This selective attenuation should gradually change
the enerqy spectrum of a wave group containing many different frequencies.
Hunt (1959) was the first to include the effects of viscosity in
the fluid regime. His approach was somewhat different from the usual
scheme of simply correcting the external potential flow near the inter-
face. He considered the case of small amplitude motions in a viscous
fluid and therefore solved the Tinearized Navier-Stokes equations by
defining u = “b, =¥, and w = b Y, . 0 satisfies Laplace's equa-
tion and vvzw = Yy s where ¢ is the stream function. At the surface,
along with the kinematic condition, a vertical stress condition was

used;

-p/p + 2vwz =0 z=d+n, (2.4)
while at the bottom, the vertical stress was taken to be continuous;
p + 2uwz = p * 2u(ws)z z=0. (2.5)

The vertical velocity component is assumed continuous and the horizontal
velocity component is taken to be zero. It is very unlikely that the
vertical stress will be continucus across the interface. The bed is
taken to be infinitely deep which is not a realistic assumption.

Hunt's conclusions are (1) the damping is essentially the sum of
the boundary layer damping with an impermeable bottom and the bed damp-

ing given by Reid and Kajiura, and (2) when neither the porosity nor
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the permeability are small, there are two possible wave velocities. The
second result must be viewed with skepticism since Darcy's law and the
boundary conditions applied would most 1ikely fail to be valid for beds
with permeabilities of that magnitude. He also found a slight increase
in the wave period, T , due to the porous bottom,

Murray {1965) did an analysis similar to Hunt's in that he also
solved the linearized Navier-Stokes equations over the entire fluid
region and allowed the bed to be infinitely thick. The surface displace-
ment was not damped. Unfortunately, the equation for the bed flow is not
Darcy's law since the time-dependent term is multiplied rather than di-
vided by the porosity.

Murray recognized that the stresses are not continuous across the
interface and deve]oped_a new boundary condition. The c¢riteria for this
condition is that the rate of doing work shouid be conserved across the
interface. The bottom surface is conceptualized as being a series of
irrequiarly spaced rectangles of the same height. His condition was

stated as

|
o)

Q
(Dlz) by, W) - (P +2wp) = p  z= (2.5)

where Q] and 02 are the components of the seepage flow in the x
and z directions, respectively, and p and pg are the pressures in
the fluid and the bed, respectively. MNeither Hunt nor Murray maintain
that the two pressure fields are continuous at the interface.

Liu (1973) did a rather straightforward and uncompiicated analysis.
He made a new innovation by including a non-slip condition at the inter-

face so that both the horizontal and vertical velocity components are
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continuous. The flows are governed by Laplace's equation subject to a
Tinearized bottom boundary layer and an infinitely deep bed. The sur-
facae elevation is not considered to be damped as assumed by Reid and Kajiurﬁ,
and Hunt. Therefore the attenuation coefficient has no effect on any
other derived quantities. As in Hunt's paper, the vertical stress is
continuous which implies that the vertical shear stress is continuous
since p = P at the bottom. The horizontal stress is also assumed to
be continuous. The dispersion relationship is obtained from the linear-
jzed kinematic surface boundary condition, equation (3.9). He found the
same two values for g as Hunt had found, and the porous bed dissipation
is found in a similar manner as in Putnam's paper. A comparison between
theory and Savage's experiments indicated a tendency from

low to high values as d/L decreases across the intermediate range.

There appears to be an error in his evaluation of the boundary layer at-
tenuation factor. The results obtained by Hough (1896) and the writer
for the impermeable case are equal, and are twice that given in Liu's

equation 28. No correction is made in the errata which was published in

October, 1974, or in the discussion by Dalrymple (1974).

2.3 The "Radiation-Type" Condition

Beavers and Joseph (1967) published a paper which discussed a
boundary condition for flow at the fluid-bed interface. It is a condition

on the horizontal component and is written as

. @ o
u, = (u us) z

]
Q

(2.6)

where K = permeability, u = fluid velocity, ﬁs = porous bed flow,

as given by Darcy's law, and a 1is a constant whose value depends on
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the porosity. It is similar in form to the “radiation-type" boundary
condition encountered in heat conduﬁtion problems. In this case, it is
essentially a statement concerning the shear stress distribution across
the interface. In the case of two adjacent Newtonian fluids flowing at
different rates, the shear stress must be continuous since neither fluid
can sustain shear stress. On the other hand, the bed is capable of sus-
taining a shear stress and, therefore, although the velocity profiles
should be continuocus, it should show a marked discontinuity in slope.

The investigators performed a series of experiments using a Poise-
uille flow arrangement to test the validity of this hypothesis. They
used two types of artificial beds, one "granular” and the other a "lattice-~
type". The fluid was & 100-grade oil. The parameter measured was the dis-
charge, Q , from between the top plate and the bed interface. The
fractional increase ¢ = (Q - Qi)/qi , between { and the thaoretical
discharge for flow between two impermeable piates, Qi , was plotted.
Some of this data is reproduced in Figures 2.1 and 2.2, with an additional
curve added. The additional curve is ¢, for the case of continuous hori-
zontal shear (see Appendix 7.1). 1In Figures 2.) and 2.2, d represents
the gap between the two boundaries. For large values of d// K and
small values of K , the separation between ¢c and the data is quite
large. The other curves represent theoretical resu]fs using the above
boundary condition. The a's shown are those which give the best fit.
The values of o/V/ K for the curves given by Beavers range from 30
to 150 cm”! and are 1isted in Table 2.1.

Recently three separate papers were published concerning this

'slip' condition. Saffman {1971) published a statistical analysis
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Table 2.1. Values of a/Y K from Beavers and Joseph, (1967)

Material K(cmz) a al// X (cm-])
Aloxite (particulate) 1.6 X 107° 10 25
Aloxite 6.5 % 1075 .10 39
Foametal (lattice) g.2 x 107" 4 140
L 7.1 X 107° 1.2 142
" 7.1 % 107° 0.8 95
0 3.9 x 107% 1.45 73
. 9.7 X 107° .78 79

extending Darcy's law to nonhomogeneous porous media.

From the limiting

case of a step function distribution of K and e , a boundary condition

very similar to Beavers' was obtained and it was suggested that the Gs

term could be dropped. Taylor {1971) published an experiential work based

on the theoretical derivation of Richardson (1971).

The apparatus used

to test the radiation condition involved a torsion pendu’um suspended

above a grooved rotating plate. The plate simulated a porous bed whose

porosity and permeability were determined by its design.

By measuring

the torque exerted on the torsion plate a comparison could be made with

theoretical predictions and therefore test the condition's validity.

Their results supported the hypothesis.



3  THEORETICAL DEVELOPMENT

3.7 Initial Comments

The wave-porous bed problem involves the solution of two coupled
flows. The major regions are the fluid and the bed. The two boundary
layers, shown in Figure 3.1, are reguired in order that the flows satis-
fy the listed physical conditions at the interface. Since viscous ef-
fects in the main body of fluid are small, the flow field can be deter-
mined from the equation of continuity which, in turn, can be expressed

in terms of the velocity potential.

e =0 . (3.1)

The velocity potential is defined from the relationships U = (¢)x and
W= (q:)z . U and W represent the horizontal and vertical velocity com-
ponents of the wave field. The subscripts, x and 2z , indicate differ-
entiation with respect to the two coordinates. Equation (3.1} is La-
place's equation. One condition at the surface and one condition at the
bottom can be satisfied by the solution of Laplace's equation. The re-
maining condition at the surface is satisfied by relating o , the fre-
quency, to k , the wave number, in terms of physical gquantities such as
the water depth, d. This relationship, called the dispersion relation-
ship, governs the possible combinations of these two wave parameters.
Darcy's law, shown in Figure 3.1, expresses a linear dependence be-

-~

tween the seepage flow and the pressure gradient. The quantities ug

and ;5 will be used to denote the horizontal and vertical components
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of the seepage flow as derived from Darcy's law. The subscript "s"

will denote a sediment-related quaﬁtity. No such subscript is used with
the fluid-related quantities. The seepage velocity in Darcy's law is a
statistical mean discharge per unit area. Conceptually, the flow in the
bed is treated as if it were a single phase media. This approach is jus-
tified since the velocities under consideration are averages and do not
represent the real interstitial flow within the pores of the bed. Thus
the velocity field is seen as having a value at all points in the bed,
whereas in reality, the flow is nonexistent within the sediment parti-

cles,

3.2 Solution for the Potential Field

In this section, the solution for the flow in the main body of the
fluid is found. The kinematic boundary condition at the surface will
be applied, but application of a bottom boundary condition must wait
until the solutions for the bed and boundary layer flows have been de-
rived.

As mentioned in .ection 1.4, the exact solution of Laplace's equa-
tion subject to conditions (1.4), (1.5}, and (1.6} is not known and
requires the use of an approximation method. Of course, equation (1.6)
will be replaced with a nonhomogeneous condition because of the verti-
cal flow through the permeable interface. ¢ and n , the vertical sur-

face displacement, are expanded into perturbation series,

¢ = e o + 22 ¢2 + eve (3.2}
and
n=e ny + g ig + oo (3.3)
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where the expansion parameter, £ , is assumed to be small relative to
unity. For small amplitude waves, it will be shown in Chapter 4 that
; is of the order 'ak' where 'a' is the wave amplitude. n represents
the surface elevation with respect to the mean water level, d. The

boundary conditions at the surface are given as

ng*U-n . =W=2¢, (kinematic) z=n+4d, (3.4)

¢, + {1/2) (dﬁ +¢2) +gz =0 (dynamic) z =n+d, (3.5)

where the subscript "t" denotes differentiation with respect to time.
Since n is not known, the evaluation of ¢ or any of its derivatives

at z=n+d must be approximated using a Taylor's expansion about z = d.
¢Id+n= ¢Id + (n-d) ¢Zld + e (3.6}

where “|d" indicates the evaluation of the function at point 2z = d.
The perturbation expansion of ¢ 1is substituted into the Taylor's

expansion of ¢Id+n' The resulting expression is substituted into the

surface boundary conditions, (3.4) and (3.5). The first-order boundary

conditions are obtained by retaining only the terms having ¢ as a

coefficient.

(¢;), = (nyde (kinematic) z=d (3.7)
and

(¢1)y = -9n, (dynamic) z=4d . (3.8)

The implementation of the perturbation series has resulted in the lineari-
zation of the surface conditions. Since only the first-order solution is

considered in this paper, the subscript "1" will be dropped for the
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sake of simplicity and all quantities derived are understood to be first-
order approximations. |

The solution 5ought is periodic and therefore ¢ 1is assumed to be
6 = (A, coshkz + B, sinhkz) e'X (3.9)

where x = kx-ot. x is the horizontal coordinate and the wave is propa-
gating in the positive x direction.
Substituting ¢ and n into {3.8), the following relation between

the integration constants is obtained.

_ -lag
AI + By cothkd = Tsinhkd - (3.10)

The condition at the bottom is that the horizontal and vertical
velocity components are continuous . The conditions cannot be applied
until the general solutions for the bed flow and boundary layer motions
are obtained since the fiows are coupled. Expressions for U and W

can be obtained by differentiating ¢ with respect to x and z ,

respectively.

U= ik(A] coshkz + B, sinhkz) e'X | (3.17a)
and

W=k (A1 sinhkz + B, coshkz) eix . ’ {3.11b)

The pressure is related to ¢ using the Tinearized Bernoulli equation.

P = -pdy + pg (2-d) (3.12a)
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or
p = ipo(A,coshkz + B,sinhkz)e'X + p(z-d)g (3.12b)
where p is the fluid density and g is the acceleration of gravity.

3.3 Solution to the Porous Bed Flow

Darcy's law, as stated below, is usually solved as a potential flow

problem (Zaslavskii, et al.,-1968) using the relations

1 ,~ 17 1 _

GE{us)t PR 7o ﬁ{ps - pgz)x = Ug (3.13)
and

Ltw ), + = - Lp - ogz) = (3.14)

ve's’t T K% mPs = PIZ), = A .

where v 1is the kinematic viscosity, u is the dynamic viscosity, £ is the
porosity, and K 1is the permeability. Since continuity must also apply
to the bed, (us)x + (ws)z = 0. It follows that (US)x + (Ns)z = 0.

From (3.13) and (3.14}, it is seen that U, and W are expressed as

the gradient of a function. Therefore, let

u )

¢!y (3.15)

(¢ )

c s)x and Ns = (¢

Substitution of {3.15) into the continuity equation implies V‘¢S = .

Substituting {3.15) into (3.13) and integrating over x, we find

__1 |
¢g = - 5{p, - pgz) + D, . (3.16)
Let
- kz ~kzy iy
¢, = (Aye™” + Boe " )e' X + 6(2) . (3.17)
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From Laplace's equation,
G{z) =C'z+D" . (3.18)

0 to be satisfied by this flow is continuity of

The condition at 2
pressure. The potential pressure field is assumed to be undiminished
across the boundary layer. To prove this point, the vertical momentum
equation must be considered since it contains the (p)Z term. The
usual approach {Schlichting, 1968) is to nondimensionalize the momentum
equations and show that all the terms in the z equation which contain
w are small compared with the terms in the x equation. If this is
so, (p)z equals the sum of a number of small terms and is therefore
small itself. In this case, the situation is somewhat different since
percolation across the interface is allowed. However, the seepage
velocity is determined by the ratio, K/u , which has a maximum value
of 107° em® - sec/gr. The increase in w at the interface over the
value of zero for the impermeable case remains small compared to U0

and the standard boundary layer approximations remain valid. The sub-

script "0" denotes evaluation at 2z = 0. Thus,

- i .
dlg = (AytB,)e'® + D~ < Pel, (3.19)
: -igA ;

= 1, eix,ad
p5|0 ——— et =D, . (3.20)

Combining (3.19) and (3.20),

Az + B2 == {3.21)
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and

D ot 02 (3.22)

In order to apply the boundary condition at 2z = -h , an expression for

-~

W, must be obtained. This is achieved by solving {3.14).

-vet/K

W= () + ve [o evet/K (o) dt) - e (3.23)

If we assume that the motion is initially zero, (ﬁ;) can be dropped.

5
Performing the integration results in the following expression for ;5

~  _ __ kveK kz ~kz, ix -

W, = Toe-10K) (AZE - BZE Je' A+ KC . (3.24)
The condition at z = <-h 1is ;s = (., Application of this condition
results in two expressions.

Are M - B ekl = g (3.25)
and

C =0

From (3.16), (3.17), (3.18), and (3.22),

Ps = -ulAe’ + Be ™) e'X 4 pg(z-d) (3.26)

and from continuity,

~ _ dkvek (Azekz + B

-kzy ix
u, = Tve-1oK) Je A {3.27)

o
At this point, we return to the fluid regime and soive the boundary layer

equations.
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3.4 Boundary Layer No. 1

As discussed in the introduction, a linearized laminar boundary
layer is assumed. The criteria for this assumption is strongly depend-
ent on the expansion parameter, £ , and will be derived in Chapter

4 once the solutions are obtained. The x-momentum equation is

21 -
Up = W, == op, = by (3.28)

If us= by * u® , (3.28) becomes
u; - w’_ =0. (3.29)

The decomposition of u into a potential component plus a viscous cor-
rection term, u” , is discussed in Phillips (1969). As z increases
away from the interface, viscous effects decrease to an insignificant
amount which implies that u” approaches zero. The solution to (3.29)
is

u = arelizhlez +ix (3.30)
where

b =+ ¢/(c/2v) .

The condition at z = 0 1is the "radiation-type" condition described in

Chapter 2. When the decomposition of u is employed,

(uw+uU- us) - UZ z=0, (3.31)

M~
~e
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Substituting the expressions for u”, ﬁs , and U into (3.31) and

evaluating at z = 0 yields the condition

ke p ookl v (X “_;i)b) Ay - 2% (A, +B,) =0 (3.32)

jkveK

where A = TGE:TEE) .

An expression for w~ is obtained from continuity;

- _ iku”
W’ = - ST {3,33)

3.5 Boundary Layer No. 2

One of the implications involved with the "radiation-type" boundary
condition at z = 0 is that viscous effects diffuse at least a small
distance into the bed. The extent of this viscous penetration depends
on the permeability and porosity. Although this distance is probably
very small for the bed materials under consideration, the effect on the
shear stress may prove to be significant. As mentioned in section 3.1,
the matching of the horizontal velocities at the interface is consistent
with the idealized bed flow. Introduction of this matching layer is
necessary since both AZ and B2 have been utilized in two other
conditions, (3.21) and (3.25). The matching Tayer adds another inte-
gration constant which makes the total number of constants equal to the
number of boundary conditions (not including the dynamic surface con-
dition). As in boundary layer No. 1, viscous effects decrease away
from the interface and approach zero at some distance away from the

bottom.
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The equation utilized in boundary layer No. 2 is a result derived
by Brinkman (1947) for a field of closely packed spheres. This equation

has been discussed by Batchelor (1974) and is written below.

() gy * (udye = uz (U)y - g U =1 (pg-pg2), . (3.34)

§"22Z

{3.34) is the horizontal momentum equation. The vertical equation has a
similar form with the differentiation of the pressure term being with

respect to z rather than x. If u_ 1is decomposed in the same man-

$
ner as u, i.e., u. =u +u;, (3.34) becomes
(W), + (u),, - (u), -+uz=0 (3.35)
S XX s’zz  ve ‘st K s ‘ '
The condition to be satisfied at z = 0 s
w=U+ut - . (3.36)

Equation {3.35) can be simplified by making use of the phase relation
between x and t. Since we are dealing with trigonometric functions
having x 1in their arguments, a relationship between 82/8x2 and

azlatz exists and is stated below.
(k/0)%32/5t2 = 3%/ax2 . (3.37)

Using (3.37) and applying a Fourier sine transformation on (3.35) re-

sults in

- @2 L @) (B = -areX

= - (@)2r(ikA+AT -A(Ay*B,))e X (3.38)
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Here f 1is the Fourier sine transform of u; and r 1is the transform
parameter. The apostrophes denote differentiation. The terms enclosed
in parentheses on the right-hand side of (3.38) represent the value of

-

ug at 2 = 0 as determined by matching velocities. (3.38) is a linear,
nonhomogeneous, second-order differential equation in time. The compli-
mentary solution is the sum of two exponential functions, one of which

is decaying and the other grows in time, f is bounded, which elimini-
nates the latter. Since we are not interested in transient effects, we
will consider the time to be large enough to cause the complimentary

solution to be insignificant in comparison to the particular integral.

The particular integral is

X
fire
£ = (3.39)
(c"-Biag+c)
where B = (%02 . (%EJ and ¢ = (%02-(r2+%) . The inverse is given by
.2 . .
u; = = f: f sin (rz)dr , which can be evaluated as
- 1ky2  Bz+iy
u; = (U) Qe {3.40)

where 0 = (kz- %%—+-%)]/2 » (De Haan, 1858). Using the continuity

equation,
wo = 1KUg (3.41)

which allows - the last remaining condition, that of a continuous mass

flux across the interface, to be satisfied.

Wo * ¥Wg - wslo slo
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or

_
g

, 1. 1 - ; k
AT + kBT + ik (§+ -(-1_—1)-5) A] + ix(1- ‘-e-) Az
-1+ %8, =0 (3.42)
g’ "2 . *

Conditions (3.10), (3.21), {3.25), (3.32) and (3.42) supply the in-
formation needed to find the values of A, B,, A, B,, and A; , which
are the only remaining constants found in the expressions for the various
velocity components. The values of these constants are listed in Table

3.1. A vrepresents the augmented coefficient matrix.
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4  DISCUSSION

4.1 Initial Comments

Knowing the solutions and the integration constants, it is now pos-
sible to derive expressions for the physical quantities of interest. As
seen in Table 3.1, the integration constants are quite lengthy and con-
tain real and imaginary components. For natural conditions, quite a num-
ber of simpiifications can be made with the establishment of the appro-
priate criteria. Appendix 7.2 lists the parameters appearing in the in-
tegration constants with their orders of magnitude. In the following
derivations, the calculations are usually long involving much algebra.
It serves no purpose to reproduce them here. The procedure in all deri-
vations is to find the quantity in terms of A7, B], A, A2 and Bz,
separate the real from the imaginary components and finally simplify
the result using Appendix 7.2. Therefore, no approximations are made

until the final result is obtained.

4.2 Potertial Field Results--Fluid Regime

The velocity potential, ¢ , is found to be essentially the same
as given by Airy wave theory for natural conditions. The sinhkz term
is due to the porous bed modification of ¢ and approaches the value

Zero as z -+ 0 .

o= 2 {coshkz~sinx _ (J‘?+12)U2 ov K sechkh
k sinhkd 1 avE sinhkd

) sinhkz

« sin (x + 0 + ¥)}, (4.1)
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where
I=~(— 2KV _ . coshkh + K(—2- + b) sinhkh)
2bv Ko s
J =—g_jﬂﬂi"_ » coshkh + Kbsinhkh)
bV K o
g= 1+ 2K 4 p(R)2)1/2

o* = atan(b/{a/v K + b))

and

Yy = atan(I/J) = atan(|I]/|d]|) + m

The horizontal and vertical potential velocities can be obtained by
differentiating ¢ with respect to x and 2z respectively. The ratio
of the first term to the second term of ¢ can be shown to be of the
order of b/k ¥ L/&>> 1. For this reason and also the fact that the
second term of ¢ vanishes at z = 0 , the expression for U is approxi-

mately

U= 9%%%%E§£ - COSY . (4.2)

Since the vertical velocity at z = 0 1is of interest the minor term of
¢ will not be dropped from W .

sinhkz (J2+12)1/2 (c#”K'sechkh)

W= aolcrreg » sin x = == QVE Sinhkd | ° coshkz

. sin (x+0 +¥)} . (4.3)
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The pressure distribution remains unaffected by the porous bed since

¢ is virtually the same as in the impermeab1e bed case. The pressure is

written as p = -p¢, * pg(z-d) or

2
= 30 coshkz | _
P =0 S —Snnkd - Cosx * eg{z-d) . (4.4)

This result supports the approach of Putnam {1949}, who left the bed and
fluid motions uncoupled and simply used the pressure field of an Airy wave
to drive the bed flow.

Now that an expression for ¢ has been obtained, the value of &
can be derived by comparing the magnitudes of the Tinear terms and the non-
linear terms in {3.5), i.e, dynamic boundary condition. When this is done,
it is found that € = ¢§ /¢t = ak . Therefore this wave theory is valid
for ak << 1, i.e., the amplitude is much smaller than the wavelength.
It is also because of this fact that the nonlinear terms can be dropped

from the laminar boundary layer equations.

4.3 Potentijal Field Results--Porous Bed

The value of ¢ is the same as Putnam (1949), notwithstanding his

afore-discussed error.

2

. _ag coshk{z+h)cosx , gd
¢s vk sinhkd-coshkh * v ? _ (4.5)
2
. pac-coshk(z+h)cosy
Ps = "k sinhkd-coshkh  * P9(z-d} , (4.6)
- 2 . :
y ac-Kcoshk{z+h)siny (4.7)

s - Vsinhkd-coshkh :
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and

2, .
~ _-acg“Ksinhk(z+h)cosy -
Ws = “Usinhkd-coshkh . (4.8)

The reader should recall that z is negative in the bed.

4.4 Boundary Layer Results

The result for u” is

-bz
- _ _ ace o s

Since a decrease in a/Y K 1indicates less resistance to the boundary
tayer flow as seen from the boundary condition, it will affect a decrease
in u”’., Therefore u = U + u” increases in magnitude as does the phase

advance, 6* , because U and u” have opposite signs.

-bz
W= aoke ., cos {x+bz+0*-n/4) . (4.10)

Y 2 £bsinhkd

Comparing w” to u” , it is seen that u” is greater by a factor of
approximately L/& .

Figures 4.1 and 4.2 show the boundary layer profiles for two dif-
ferent values of o/vY'K . There is an appreciable difference between
the two examples in the lower section of the layer. Note the value of
Uy - To i1lustrate another trend, Figure 4.3 plots s"o/Uo over a wave
period. Finally, Figure 4.4 shows the dependence of u, on the phase
angle x . As o/VK decreases, there is a steady phase advance which
can be substantial for small values of a)/TF . The program, UBLI, given

in Appendix 7.3, can be used to calculate the boundary layer profiles at

various values of x .
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Figure 4.3 uo(max) /U, vs wave period. Curves represent
constant values of ofvY K (cm"1),'u = .01 cmz/sec
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Figure 4.4 Relative bottom velocity vs phase angle curves for values
of a/v K (cm']), T =28 sec, v = .01 em/sec
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The boundary layer thickness is a function.of the period
{8«/"2v/c ) . Figure 4.5 shows that short period waves have a
§ 0.5 - 1.0 cm., as for boundary layer No.2 &, ¥ /K < 107 em .
Thus this Tayer is so thin for ordinary porous beds that its thickness
is merely a fraction of the grain diameter. It has been noted by sev-
eral investigators (Murray, 1965) that the bed can become substantially
fluidized near the interface before significant motion occurs, i.e., the
bed reaches a "quick" state. If this is so, then the permeability will
be greatly increased and the layer will extend deeper into the bed,
thereby encompassing the first grain layer. This effect would decrease
the surface shear stress but increase the form drag of the interstitial

flow on the particles. The carrection velocity in layer No.Z2 is

Z/V’R- *
- . age cos(x+2") - oK , ..
Us = Sinhkd (COSX - £ < ‘s z2<0 (4.11)

Unlike its counterpart u”, u; has no depth dependent phase. An ex-
ample of the velocity profile across boundary layer No.2 is shown in
Figure 4.6. Note that the negative scale is amplified in order to empha-

size the flow reversal within the bed.

4.5 Stream Functions

The stream function is defined by

U= -y, and w = Yy - (4.12)

The stream function in both the major flow regions is modified near the

interface by a ¥~ which corresponds to a u”. The stream function can be

Yound for the fluid domain by utilizing (3.11) and integrating (4.12).
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ac { sinhkz
k

) ) (224132 o/ Rsechkn,
sTnhkd 7

kavé

- cosy +
» coshkz » cos (x+?+9*) } . (4.13)

The second term represents a modification to the impermeable case. Its
amplitude is small compared to the first term, except near the bottom
where sinhkz approaches zero and coshkz approaches one. Under the
approximations applied, the value of the second term depends on b ,
the parameter arising from the boundary layer solution and upon o/v K ,
the parameter given in the boundary condition. It also has a phase ad-
vance of v n/4 and derives its existence from the pumping action in the
bed. As can be seen in Figure 4.7, the streamlines in the bea intersect
the interface.in advance of the external flow.

The stream function for the porous bed flow is

- -ac®K_sinhk(z+h)+siny (4.14)
S kvsinhkd-coshkh )

<1

which is 90° in advance of the potential field stream function.
The approximate corrections to the stream functions in the boundary
layers are given by

bz

- x
- ="age scos{ytbz+g +n/4) . (4.15)

v 2 E b sinhkd

and

} z/V K *
0 - acfs‘lirnﬁkd (cosx- Q;(Exto_) -% siny) . (4.16)
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Figure 4.7 Streamlines L =100m, d=13m, h=7m, a =1 M,
K =10 cmz. a/v' K = 100/cm v = .01 cmz/sec



60

The last term in w; is retained only because it is approximately 90°
out of phase with the first two terms. The program called STREAMS found
in Appendix 7.3 is used to calculate the stream function values in both
the fluid and the bed for any size depth-increments and at phase incre-

ments of 7/8.

4.6 Shear Stress

The shear stress at the interface is the main cause of sediment motion.
Figure 4.8 shows the nondimensionalized shear stress with a representative
number of measurements from Teleki and Anderson (1970). the quantity romax/p-
UOU0 is proportional to the friction coefficient as stated in Equation (1.9).
Unfortunately all of their data lies in what is considered to be the
transition region (35 < Uovr155F? /v <910). Also shown 1is the result
from Kajiura's (1968) theory for Cf with n = 0.5. Teleki's data was
collected using an impermeable sloping bottom (slope = 1:12.5). Nonethe-
less, the theoretical curve shows a correct trend across the transition

zone. The laminar bottom shear stress is given by

- v 2 uaGbCOS_(X‘*'G*— w/4) . (.17}
0 £sinhkd E

T

The data points in Figure 4.8 are given in Appendix 7.1. The program
DISSIP in Appendix 7.3 can be used to calculate both'the dimensicnal and

nondimensional forms of T, -

4.7 Energy Dissipation and Attenuation Coefficients

Energy dissipation occurs in all the regions. The values of d/L

and h have the greatest affect on the relative importance on the energy
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loss in the three major regimes. To calculate the rate of loss in the
fluid region, Raleigh's dissipation function is employed (Rouse, 1938).
Contributions will arise from the external flow and the boundary layer.

Enerqy dissipation is given by

ff [u? + w2 + 3 (u, + w,)?] dzdx (4.18)
oo

where major contributors to fluid domain losses are given by
=4y [ [ U, + W Jdzdx-+u [ [ (u, )" dzdx | (4.19)
oo * z o0 °

The first term is due to the potential flow and the second is from the

boundary layer. The first term is evaluated as
D, = 4mia’o’ 4.20)
§ = dma‘o cothkd , (4.

an expression identical to Hough's (1896) result. The boundary layer loss
is

- ubk

D1 = 5= ( Ersinmka )2

(4.21)

The porous bed rate of loss is calculated in the saime manner as

Putnam’s (1949) and Liu's {1973) determination, and is

Lo 2
) ~2 =2 _pK (agL 2
K ] (g ws) 429X = o5 (GoTahwa)

oy tanhkh . (4.22)

This is exactly the same resuit as obtained by Reid and Kajiura (1957).
Figures 4.9 and 4.10 show the relative contributions of D, and pr
for a typical wavelength in various depths of water and over beds of
various thicknesses. Figures 4.11 and 4.12 compare theoretical rates of

energy loss to experimental values from Savage (1953). All of Savage's

waves were intermediate waves and his data is given in Appendix 7.2.
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The attenuation coefficient, vy , is defined as D/2E . The energy,
E , of a small amplitude wave is pgalez .

-D=E = pgaatL énd a_ = at/C where Cg is the group velocity and

X g
equals the rate of energy transmission in the wave, so

a = "_ZIE__ =_La
X pganL Cg

Therefore,

g=ae Yt (4.23)

It is found that the dispersive relationship obtained by satisfying the
dynamic surface condition which was not utilized in section 3 does not
change from the impermeable bed result under the simplifications made.
The result is a definite relationship between o and k in terms of the

water depth.

02 = gktank kd .

Therefore the phase speed is unaltered and the group velocity from Airy

theory,

=9 _ 1.9 Zkd
Cg g > (k tanhkd) (1 + sTnhkd )
can be assumed.
This value of Cg was used in interpreting Savage's data. The
program DISSIP was used to determine the energy losses for both Savage's
data and the losses indicated in Figures 4.9 and 4.10. This program can

be used for either discrete data or for systematically changing the values
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of the wave, bed and boundary condition parameters. Substitution of

certain cards can change the output from dimensional to nondimensional.



5  CONCLUSIONS

It has been shown that porous bed effects can produce significant
adjustments in the structure of the bottom boundary layer. The results
expressed here are subject to rather stringent restraints, i.e., that
the bottom boundary layer is laminar and that the bed is stationary.
Nonetheless, understanding of the laminar case is valuable to the un-
derstanding of the transition and turbulent flow regimes. Also, knowl-
edge of the shear stress is a prerequisite to prediction of the thresh-
old conditions. At present very little data exist on the boundary layer
structure and the shear stress related to wave motion above a porous bed.
Since the layer is typically very thin, measurements are difficult and
new techniques need to be developed.

As for the radiation condition, for successful application to be ac-
complished, determination of o for natural bed materials is required.
The properties of the bed at the interface may not be typical compared
to the gross properties when pressure gradients and flow fields are pres-
ent. If this is the case, the values of a , €, and K will be altered.
The question of whether sediment motion is a sudden event or is preceded
by partial fluidization of the interface is a pertinent question. Once
bed motion bégins, the boundary condition becomes invalid and a new con-
dition must be applied. A great deal of experimentation will be required
to determine its form.

A direct extension of this paper is to determine mean 1ift and drag
forces on individual particles. Exact calculation of thase forces is
possible since the flow pattern at the interface is known. Fiqure 5.1

shows a typical velocity profile and the 1ift and drag forces. The drag
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Figure 5.1 Forces acting on a sediment particle
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p

force, Fp , contributes to the vertical force dée to the moment about the
contact point with the adjacent particle. The drag force is approximately
equal to Ty * (m 02/4) where D 1is the sediment particle diameter., The
lift force, F, , approximately equal to ou.l = pu, f f(us)sz where T
is the circulation about the particle and A represents area. The 1ift
and drag forces are opposed by the submerged weight of the particle, i.e.,
Fg = -(ps-p)g(ﬂD3f5). With these calculations, the threshold conditions
can be approximated analytically. The author plans to continue this work

and complete these calculations.
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Derivation of &
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As described in section 2.3, the determination of ¢ facilitates
the evaluation of o . In order to clarify the implications of assum-
ing a constant velocity shear across the fluid-bed interface, the quan-

tity @c was added on to the Figures 2.1 and 2.2.

Poiseuille flow:

1 =
22 pr 2F x>0

Solution:

u=Fzz+Az+B
Porous bed flow:

1 -
(US)ZZ-EUS-ZF z2<0
Solution:

CezN—K+ De-z//'K .

u = 2 KF

]

The solid boundary of the Poiseuille flow is located at z = d and the

bed is considered to be infinjtely deep. . The boundary conditions are

1. u=20 at z = d.
u, = (us)z at z2=0.

5

2
3. u=u at z = 0.
4. u_ fis bounded as lz| 1increases.

The values of the constants are evaluated as

o Fl2-tfivx
1+

. Fd VK (2+1)
6 - - MRy
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[}
1

_ F 2-;2 K
+7

0

L=}
I

where ¢ = d// K. The values of Q and Q, can be determined by in-
tegrating y from z =0 toz=4d.

3 3 2 .. 2
) d a3 /R (-
Q =-F g Q=-F&G+Smm—) .

Finally,

et —— = C+2
be Q; Mzggay-
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Orders of magnitude for physical parameters
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Parameter Definition Value
L Wavelength >10° cm
T Period >100 sec
v Kinematic viscosity 1072 cmz/sec
0 Density 10% gr/em’
u Dynamic viscosity 1072 gr/cmesec
k Wave number Q072 /em
g Frequency 5100 /sec
b 510] /cm
K Permeability <107° cm®
£ Porosity 0.5
o 107! -10!
a/ /X 10! - 102 /cm
: >3 + 10° /em
A _*:_10'8 cm
. Expansion parameter < 0.10




&3

Data from Teleki and Anderson (1970)

Re 1/ (o)
60 .048
112 .021
122 .025
124 .034
224 .025
238 .020
322 017
666 . .009

1060 .006




Data from Savage (1953)
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Run d{cm) K+10%(cm?) L(cm) Tn(H /He) Y
29 10.3 4.47 71.3 2.49 .098
28 1.3 2.71 .107
27 93.0 2.09 .093
26 109.7 1.99 .093
25 15.2 83.2 1.51 .062
24 109.7 1.39 .068
22 131.1 1.08 .057
23 131.1 1.37 .073
21 131.1 1.02 .054
20 22.8 92.0 .64 .026
1 .65 026
10 .68 027
19 .68 .027

9 .67 .027
18 .70 .028
17 124 .73 ".037

8 /3 .037

7 .72 .036

6 .72 .036
15 .75 .038

5 .74 .037

4 154 .61 .035
14 .63 .036

2 ~ .036
13 .62 .036

3 .60 035
12 .62 036

1 .62 .036
77 2.14 91.4 31 013
78 91.4 .33 013
76 126.8 .34 017
75 126.8 .35 .018
73 153.6 .36 .021
72 156306 .36 .021
74 1563.6 .35 .020

Length of tank test section, 1829 c¢m
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Computer Programs
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PROGRAM TO CALCULATE BOUNDARY LAYER PROFILES OVER A POROUS BED
UBL1=HORIZONTAL VELOCITY/MAX EXTERNAL VEL, BO(MAX)
APM=8OUNDARY PARAMETER, PROPORTIONAL TO 1/SQRT(PM), PM=PERMEABILITY
T=PERIOD, Z=VERTICAL DISTANCE FROM INTERFACE
M,M6,M7= # OF VALUES OF T,APM,AND Z RESPECTIVELY
Z1=RELATIVE VERTICAL DISTANCE FROM INTERFACE WRT B.L. THICKNESS
DIMENSION UBL1{10),AAPM(5)
M=6
M6=4
M7=9
P1=3.141593
v=0.01
10 FORMAT(4F10.2)
READ(1,10) (AAPM(J),J=1,M6)
2 FORMAT(/,3X,'APM',9X,'0',8X%,'22,5',8X,'67.5',8X%,%90",7X,"1
212.5*,7X, '135° JIX, \157.5° J7X, '180 DEGREES' ]
wRITE(s 2)
DO LOOP FOR T
DO 2000 I=1,M
T=2%*]
WN=2.0*PI/T
B=SQRT{UN/{2.0*V))
BLT=4.6/B
DO LOOP FOR Z1
DO 1000 L=1,M7
21=(M7-L)*4.6/(M7-1.0)
20 FORMAT(///,3X,'T=",F6.1,3X,'V=",F5.3,3X,"BLT=",E9.2,3X,'21=",E9.2)
WRITE(3,20)7,V, BLT 21
DO LOOP FOR APM
DO 1000 J=1,M6
APM=AAPM{J)

DO LOOP FOR PHASE ANGLE AND UBL1
DO 900 K=1,8
Ki=K-1

ARG1=K1*P1/8.0
ARG2=ARGT+ATAN(B/ (B+APM) )+ Z1
H=(1.0+2. 0%B/APM+2, 0* (B/APM)**2)
UBLT{K)=C0S (ARG )-COS (ARG2)/ (SQRT(H)*EXP{Z1))
900 CONTINUE
50 FORMAT(F8.2,9E11.2)
WRITE(3,50) APM,(UBL1(N),N=1,9)
1000 CONTINUE
60 FORMAT(//////)
WRITE (3,60)
2000 CONTINUE
CALL EXIT
STOP
END
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C CALCULATION OF DISSIPATION RATE/UNIT WIDTH OF WAVE ENERGY, ATTENUA-
TION CONSTANT AND MAX BOTTOM SHEAR STRESS-CONSTANT WATER AND BED
DEPTH AND THICKNESS
VARIABLES-WL,A,D.H,PM, C =CONST/SQRT(PM)--DISCRETE DATA-DIMENSIONAL
DF=DISSIP RATE IN FLUID REGIME
DBL= " " IN BOUNDARY LAYER
DPB= " " IN POROUS BED
DT= TOTAL DISSIP RATE
$S0= BOTTOM SHEAR STRESS
ATC=ATTENUATION CONSTANT
WL=WAVELENGTH,A=AMPL ITUOE,D=DEPTH,H=BED THICKNESS ,PM=PERMEABILITY
T=PERIOD OF WAVE
DFI,DBLI,DTI,SSOI,TI=QUANTITIES FOR IMPERMEABLE CASE
C=SURFACE PARAMETER,DV=DYN VISCOSITY, G=GRAV ACC,DN=DENSITY
INVERSE OF BI AND B IS THE BOUNDARY LAYER THICKNESS,
UO=POTENTIAL VELOCITY AT THE BOTTOM
RE=WAVE REYNOLDS NUMBER
CG=GROUP VELOCITY
CP=PHASE VELOCITY |
1 DIMENSION WLA{20),AA(20),DA(10),HA{10),PMA(5),CA(5)
CTNH{WD)=COSH{WD)/SD
PI=3.14
2 FORMAT(3F8.3)
3 READ(1,2)DV,DN,G
4 FORMAT('DV=',F4.3,5X,'DN="',F5.3,5X,"G=",F5.1,//)
~ WRITE(3,4)0V,DN,G
C READ IN THE NUMBER OF COMPONENTS OF EACH ARRAY
5 FORMAT{618)
READ{1,5)M1,M2,M3,M4,M5,M6
V=DV/DN
C READ IN DATA ARRAYS
6 FORMAT(8F10.2)
READ(1,6)(WLA(1),I=1,M1), (AA(J),J=1,M2),(DA(K),K=1,M3), (HA(L),L=1,
2M4), (CA(N),N=1,M6)
22 FORMAT(3F20.8)
'READ(1,22) (PMA(M) ,M=1,M5)
C DO LOOP FOR WL
7 DO 2000 I=1,M]
WL=WLA(T)
WN=2*PI /WL .
C AMPLITUDES HAVE 1~1 CORRESP, WITH WL, THEREFORE NO DO LOOP FOR A, SET
J=1
A=AA(J)
AWN=A*WN
C NESTED DO LOOP FOR D
8 D0 2000 K=1,M3
D=DA(K)
AD=A/D
C NESTED DO LOOP FOR H
9 DO 3000 L=1,M4
H=HA(L)

OOOMOOO0OOOOO0O OO0
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C NESTED DO LOOP FOR PM
10 DC 3000 M=1,M5
PM=PMA(M)
C NESTED DO LOCP FOR ¢ WHICH IS PROPORTIONAL TG 1/SQRT(PM)
11 DO 3000 N=1,M6
C=CA(N)
WD=WN*D
WH=WN*H
SD=SINH (WD)
CH=COSH{WH)
TD=TAKH{WD)
C CALCULATE UNKNOWNS FOR IMPERMEABLE CASE, TI,SSOI,DFI,DBLI,DTI,ATCI
C ONLY DO THIS WHEN D CHANGES, SO
IF(L*N*M .GT. 1) GO T0 25
TI=SQRT{2.0*PI*WL*CTNH(WN*D)/G)
FI=2*P1/T1
BI=SQRT{FI/(2.0*V})
DFI==2*PI*DV* (A*F] ) **2*CTNH(WN*D)
DBLI=-DV*BI*WL*{A*FI/(2*SD})**2*2
C DTI=TOTAL DISSIP
OTI=DFI+DBLI
UO=A*F1/SD
=U0*4.6/(BI*V)
C E=TOTAL MECHANICAL ENERGY PER UNIT WIDTH
E=DN*G*WL*A**2/2.0
ATCI= DTI/€Z*E)
SSOI=BI*DV*A*FI*SQRT(2.0)/SD
AFI2=DFI/FTI
ABLIZ2=DBLI/DTI
SS0I12=SS01/({DN*U0*U0)
12 FORMAT(///,2X,'WL=",E10.3,2X,'A="',E10.3,2X,'D=",E10.3,2X,'BI=",E10
2.3,2%,'AWN=",E10.3,2X, 'AD=",E10.3,2X, 'U0="',E10.3,2X, 'RE=" ,E10.3)
WRITE{3,12) WL.A,D,BI,AWN,AD,UO,RE
19 FORMAT(?X,'IMrERMEABLE CASE' ]OX 'TI"l 8X,'Ss0I=',6X,'DFI=',7X,'DB
2L1=",6X,'DTI=",7X, 'ATI=")
WRITE(3,19)
20 FORMAT(ZSX.E9.3.5E11.3)
WRITE(3,20)71,S501,DFI,DBLI,DTI,ATCI
30 FORMAT(/,2X,‘PERMEABLE CASE')
WRITE(3,30) ‘
21 FORMAT(2X,'H=',6X,'PM=',8X,'C="',5X,'T=",9X,"'S$50=",7X,'DF=",8X, 'DBL
2=',7%,'DPB=",7X,'DT=",8X, 'ATC=",8X,'CG=",8X,'CP=")
WRITE(3,21)
C CALCULATE UNKNOWNS T,SSo,DBL,DF,DP8,DT,ATC,FOR PERMEABLE CASE
C SINCE THE EQN FOR T IS NONLINEAR AND TRANSCENDENTAL EVEN WHEN
C C>>B, TI WILL BE USED IN THE CALCULATION OF B IN THE EXPRESSION FOR T
25 C1=C*C+2.0*BI*C+2,0*BI*BI
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C2=C*C*(WN/BIL )**2/2+TD*TD-WN*TC/BI }+2,0%(BI*TD)**2+2,0*BI *TD*TD*C
C3={WN*C-2.0*(C*BI+BI*BI)*TD)/ (WN*C+2,0*BI*BI*TD)
C4=(WN*C*TD-2.0*(C*BI+BI*BI))/(2.0*BI*BI+WN*C*TD)
ARGD=ATAN(C3)-ATAN(C4)
T=SQRT {2*PI*WL/G*SQRT (C1/C2) }*COS(ARGD/2)
F=2*P1/T
B=SQRT(F/{2*V))
QI=2*A*F*C*YN*B*DV/SD
Y1=2,0*WN*(C+B)
11=-2*iN*B
SSO=Q1*SQRT(2.0/ (Y1**2+Z1%*2))
$502=550/ ( DN*U0*UQ )
DF=DF1
DBL=-DV*B*WL*{A*F/SD)**2/(4*(1+2*B/C+2*(B/C)**2) ) *2
DPB=- (2*PT*WL*A/ (T*T*SD) ) ¥*2*P I *PM*DN/ V*TANH(WN*H )
DT=DF+DBL+DPB
ATC=DT/(2.0*E)
AF2=DF/0T
ABL2=DBL/DT
APB2=DPB/DT
CP=WL/T
CG=CP*(1.0+2.0*WN*D/SINH({2.0*WN*D))/2.0
27 FORMAT(E9.2,E10.2,F9.2,9E11.3)
WRITE(3,27)H,PM,C,T,S50,DF,DBL,DPB,DT,ATC,CG,CP
3000 CONTINUE ‘
1000 CONTINUE
2000 CONTINUE
CALL EXIT
STQP
END
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C ‘PROGRAM TO CALCULATE FLUID AND BED STREAMFUNCTION VALUES AT VARIOUS
¢ DEPTHS AND PHASES '
C D=DEPTH OF WATER,H=DEPTH OF BED,V=KINEMATIC VISCOSITY,A=AMP ,WL=WAVE-
C LENGTH, PM=PERMEABILITY,APM=BOUNDARY CONDITION PARAMETER,SFW=STREAM-
C FUNCTION FOR FLUID,SFB=STREAMFUNCTION IN BED
DIMENSION SFW(20),SFB(20),SFBL(20)
PI=3.141592
6=980.0
v=0.01
D=1300.0
WL=10000.0
H=700.0
PM=0.000001
APM=100.0
A=100.0
N=130
M=8
Q=M*1.0
WN=2*PI/WL
T=SQRT(2.0*PI*WL/ (G*TANH(WN*D)))
F=2*PI/T
B=SQRT(F/{2*V))
SD=SINH{WN*D)
CH=COSH{WN*H)
ARG2=ATAN(1.0/(APM/B+1.0})
1 FORMAT(/,3X,'STREAMFUNCTION--WATER')
WRITE(3,1)
2 FORMAT(/,3X,'Z=',10X,'0',8X,'22.5',8X,'45',8X,'67.5"',8X,'90' ,7X,"1
212.5°,7X,'135*,7X,'157.5",7X, ' 180 DEGREES')
WRITE(3,2)}
C N=#USED TO PARTITION DEPTH,M=# USED TO PARTITION WAVELENGTH
C DO LOOP FOR DEPTH
NI=N+1
DO 1000 Ki=1,N1
K=K1-1
Z=D-K*D/N
C DO LOOP FOR PHASES AND SFW
MT=M+1
DO 800 L=1,M]
R=L-1.0
ARGT=PI*R/Q
C SINCE THE BOUNDARY LAYER IS THINNER THAN D/N, NEED TO INCLUDE ITS
C EFFECTS AT Z=0 ONLY
IF(Z.GT.0}) GO TO 90
C=SQRT(1.0+2.0*B/APM+2,0*(B/APM)**2)
SFBL (L )=A*F*COS (ARG1+B*Z+ARG2+P1/4,0)/(SD*C*B*1.4)
SFW (L }=-A*F/SD*(SINH{WN*Z)*COS{ARG1 ) /WN-COSH(WN*Z } *COS (ARG1+P1/4)/
Zég*SQRT(2+4*B/APM+(2*B/APM)**2)))+SFBL(L)
To 800
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%0 SFH(L)=-A*F/SD*(SINH(NN*Z)*COS(ARG])/HN-COSH(HN*Z)*COS(ARG]+PI/4)/
2(B*SQRT(2+4*B/APM+(Z*B/APM)**Z)))
800 CONTINUE
801 FORMAT(F8.2,9E11.2)
WRITE(3,801) Z,{SFW(L),L=1,M1)
1000 CONTINUE
C NOW FOR SFB
10 FORMAT(/,3X,‘STREAMFUNCTION-—BED',/)
WRITE{3,10)
C DO LOOP FOR BED DEPTH
C NB=# OF VALUES OF Z IN THE BED
NB=70
NB1=NB+1
DO 2000 K1=1,NB1
K=K1-1
=-K*H/NB
¢ DO LOOP FOR PHASES AND SFB
D3 1800 LL=1,M
R2=LL-1.0
ARG4=PI*R2/Q
SFB(LL)=-A*F*F*PM*SINH(HN*(Z+H))*SIN(ARG4)/(NN*V*SD*CH)
1800 CONTINUE
1801 FORMAT(F8.2,9E11.3)
WRITE(3,1801) Z,(SFB(LL),LL=1,M1)
2000 CONTINUE
CALL EXIT
STOP
END
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a . amplitude

A],A],Az constants

b boundary layer parameter

*b1 subscript denoting boundary layer

B],B2 constants

c constant

C phase speed

c” constant

Cf friction coefficient

Cg group velocity

d depth of water

d0 fluid excursion length

D grain diameter

D‘,D2 constants

Db] boundary layer dissipation

Df potential flow dissipation

pr porous bed dissipation

e constant = 2,718 +..

E enargy

f Fourier sine transform

g acceleration of gravity

G function

h bed depth, gap thickness

H wave height

i Y =T , subscript denoting impermeable bed
or initial condition

I constant

J constant
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wave number

von Karman's constant
permeability

eddy viscosity

wavelength

constant

subscript denoting the bottom
pressure

seepage velocity, horizontal
seepage velocity, vertical

horizontal discharge

Fourier transform parameter
Reynold's number
critical Reynold's number

subscript denoting sediment

time
period

velocity vector
horizontal velocity components

friction velocity

max horizontal potential velocity at bottom
vertical velocity components

horizontal coordinate

vertical coordinate
roughness length
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o boundary condition parameter
B constant
Y attenuation coefficient
r circulation
8 boundary Tayer thickness
[ porosity
e expansion parameter
z parameter
n surface displacement
e porous bed boundary layer parameter
e*,0" angle
constant
H dynamic viscosity
v kinematic viscosity
& constant
o1l constant = 3,14 «.»
PP density
g frequency
¢.¢S velocity potential
%0, fractional increase in discharge
X phase angle
¢.¢’,$;,w; stream functions
¥ angle

§i constant






