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ABSTRACT .

Many coastal states, and in particular North Carolina, have had

to address the problem of the effects of coastal sediments having

been transported, usually under severe oceanic and atmospheric storm

conditions. Typically, the states address such problems only after

 or during! a catastrophe has  or is! occurred  occurring!. This is

an attempt at de1ving into one small aspect of the overall study of

understanding the physics governing the transport of coastal sediments

and of the interacti ve effects between the oceanic fluid and sediment.

media.

The problem of a small-amp'Iitude wave propagating over a flat

porous bed is reanalyzed subject to the bottom boundary condition,

where u represents the horizontal velocity in the fluid, u represents

the horizontal velocity within the bed as predicted by Darcy's law, K is

the permeability and the subscript "o" denotes evaluation at the bottom,

z = 0. The term, a, is a constant whose value depends on the porosity of

the bed at the interface and must be determined experimentally. The

boundary condition is of the form of a "radiation-type" condition commonly

encountered in heat conduction problems,



The important physical quantities  velocity, velocity potential,

strea~ functions, shear stress and energy dissipation! have been

derived and are presented, subject to natural conditions. The bottom

boundary layer is represented by the linearized Navier-Stokes equations

under the usual boundary layer approximations. It is found that the

boundary layer velocity distribution and shear stress can be greatly

altered from impermeable bed predictions. Theoretical results for

energy dissipation and shear stress are compared to existing data and

are found to agree very well. The predictions of classical small

amplitude wave theory are not appreciably modified away from the

boundary.



iv

TABLE OF CONTENTS

Page

OF TABLESl IST

LISTOF FIGURES Vi

I NTRODUCTION

LITERATURE REVIEW .

24
24
29

DISCUSSION

~ ~ ~

ents

CONCLUSIONS . 60

LIST OF REFERENCES 72

APPENDICES 78

1.1 Purpose
~.2 Nature of the Fluid
1.3 Nature of the Environment
1.4 Wave Theory
1.5 Nature of the Bottom Flow Regi me
1.6 Porous Bed Flow

2.1 Initial Comments .
2. 2 Wave-Porous Bed Node] s .
2.3 The "Radiation-Type" Condition . .

THEORETICAL DEVELOPMENT .

3.1 Initial Comments .
3.2 Solution for the Potential Field .
3.3 Solution to the Porous Bed Flow
3.4 Boundary Layer No. 1...
3.5 Boundary Layer No. 2 .

4.1 Initial Comments .
4.2 Potential Field Results--Fluid Regime
4.3 Potential Field Results � Porous Bed
4. 4 Bounda ry Laye r Res ul ts
4. 5 S tream Functions .
4.6 Shear Stress .
4.7 Energy Dissipation and Attenuation Coeffi

7.1 Derivation of 0
7.2 Data .
7.3 Computer Programs
7.4 List of Symbols

1
5

6 7
'|0

20

33
35
38
41
42

47

47
49
50
r5

60
60

79
81
85
92



L!ST OF TABLES

1.1 List of assumptions

1.3 Porous bed flow .

1.2 Criteria for roughness and flow regime

2.1 Yalues of m/~ from Beavers and Joseph  ]967!

3.1 Yalues of the constants of integration

14

21

32



V1

LIST OF FIGURES

Page

1.1 Flow fields .

4.1 Boundary layer profiles, u/U, Period = 8 sec, a/v K = 100/cm
I 01 cm /sec ~ i ~ ~ ~ ~ e ~ i i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 51

4.2 Boundary layer profiles, u/U, Period = 8 sec,o/~ = 10/cm
g = .01 cH/sec,..................., . 52

4.3 u  max!/U vs wave period .
0 0

53

4.4 Relati~e bottom velocity vs phase angle curves for values

of a/~  cm !, T = 8 sec, u = .01 cm /sec. . . . . . . . 542

4.5 Boundary layer thickness vs wave period . 56

4.6 u /U vs z, curves represent profiles for differ nt
s 0

values of a/~ 57

4.7 Streamlines L = 100 m, d = l3 m, h = 1 m, a = 1 m,

K = 10 6 cm?, m/~ = 100/cm v = .Ol cm /sec .

4.8 Comparison of nondimensionalized bottom shear and data
from Tel eki and Anderson �910!.............. 61

4.9 Fractional dissipation due to boundary layer vs depth
to wavelength ratio curves for various bed thickne ses 63

644.10 Ratio of porous bed dissipation to total energy loss

4.11 Comparison of theoretical and experimental attenuation
coefficients; data by Savage �953!.

4.12 Comparison of theoretical to experimental attenuation
coefficients vs depth/wave length

Forces acting on a sediment particle 70

1.2 Classification of wave theories  Dean and Eagleson, 1966! . . 9

1.3 Turbulent boundary layer and Kajiura's assumptions . . . . . 17

2.1 Comparison of 4 and data from Beavers and Joseph �967!. . 31
c

2.2 Comparison of C and data from Beavers and Joseph �967! ~ 31
c

3.1 Equations of motion and boundary conditions......... 34



1 INTRODUCTION

As ocean waves propagate away from their generation areas, they

eventually encounter the coastal zone and, subsequently, sediments which

constitute a loose bottom boundary to the wave motion. Seaward of the

coastal zone, modifications of the propagating waves have been due to

interactions with other surface waves, surface currents, internal ~aves,

viscous and turbulent energy dissipation, and continued interaction with

the atmosphere. Since the water is initially "deep," i.e., depth/wave-

length > 1/Z, the wave group is dispersive  meaning the phase speed de-

pends on the wave length!. The longest waves, called forerunners, en-

counter the "shallo~" water   � < ~j first because they travel faster

and induce deeper fluid motions. Komar et al. �972! } ave

photographed deep-water oscillatory ripple marks off the Oregon coast

at depths of 200 meters. It is therefore quite possib1e for a wave to

have considerable interplay with the bottom before reaching the beach.

This is especially true along wide continental shelves. F om this point

of view, the wave-bottom interaction becomes of great practical importance

to the activities of man. The design of coastal structures and port fa-

cilities as well as the management of navigable waterways are functions

of predicted wave parameters and sediment transport.

The study of waves propagating over a porous, erodible bed has only

in recent years received more than passing attention by the scientific

community  see Figure 1.1!. Meanwhile, the associated phenomenon of uni-

form flow over loose boundaries has received serious attention for over
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two centuries, although description of either the flow field or the bed

configuration, whether analytic or descriptive, remains incomplete  Jain

and Kennedy, 1974; Mcguivey, 1913!, as does determination of the resulting
sediment transport  Yalin, 1972!. No doubt the physics of the wave assoc-

iated problem is becoming better understood due to recent technological

advances in instrumentation and data analysis, but until a better under-

standing of turbulence and sedirrent aechanics is obtained, predictive

capability will remain only qualitative. The key to a more complete

understanding will be in the thorough knowledge of the boundary layer

flow since all of the important parameters  flow fields, shear stress

distribution, boundary layer veloci ty profile and energy dissipation!

are functionally dependent on the dynamic character of this layer.

The purpose of this work is to investigate porous bed effects and

their relative importance upon an Airy wave in "intermediate"  .05 <

d/L < . 5! and "shallow" water depths. Particutar attention is directed

towards the bottom boundary condition to be used, because it will have

significant effects on the wave and bed flow properties, especially in

the boundary layer. R large number of assumptions are made which limit

practical application to a certain extent, but judicious deletion of par-

ticular terms in the equations of motion a1low analytic solution of the

coupled problem and clarifies the influence of the boundary condition.

It is appropriate to dicuss the assumptions as listed in Table 1.1

and to present results of other investigations which shed tight on the

credence of the approximations . The following sections will serve this

purpose, along with an introduction to the wave theory which wi11 be

used.



Table 1.1 List of assumptions

A. On the nature of the fluid

1. incompressible

2. Small viscosity

3. Homogeneous

B. Nature of the envi ronment

1. No atmospheric interaction

2. No currents

3. Irrotational motion above boundary layer

4. Nonsloping bottom

5. Smooth interface

C. Have theory selection

1. Airy or Small Amplitude Nave Theory

D. Nature of the bottom flow regime and boundary
layer equations

1. Laminar

2. Linearized

E. Nature of the porous bed and flow

1. Statistically homogeneous

2. Darcy's law applicable



1.2 Nature of the Fluid

The problem includes, in effect, a multi-phase fluid. The princi-

ple component under consideration is sea water. Of the assumptions made,

those concerning the sea water phase are the most exact. It is cordon

practice to regard it as incompressible, a'tthough it is compressible to

a sma'1l extent. It has been estimated that if' water were truly incompres-

sible, the sea would rise by more than 30 meters. The mean compressibility

is a functi on of the temperature, salinity and in situ pressure, but its

value lies in the neighborhood of 4. 3 x 10 m /Newton for the surface

layer. This places the speed of sound in the vicinity of 1.5 x 10 m/sec3

and therefore the Mach number is bound to be very small. Thus, as far as

particle dynamics are concerned the fluid is incompressible, i.e., the

volume of a control volume is assumed pressure independent  Lighthill,

]963! .

Mater can be considered inviscid except near a boundary. Since we

are not considering situations where high concentrations of suspended

sediment exist, such as in turbidity currents, the fluid is assumed New-

-2tonian and has a molecular viscosity of the order of 10 gr/cm sec.

As wi11 be shown in the discussion of the laminar boundary layer, vis-

cous effects are limited to a region only a few centimeters in thickness.

The density of sea water rarely fluctuates by more than 5 percent

of its mean value with a few notable exceptions, such as the Red Sea,

where hypersaline layers exist. Strong thermoc1ines are characteristic

of the Red Sea and can occur within the depth range of surface influence.

Generally, density variations can be important in studying large-scale



thermohaline circulation and internal wave phenomena, but herein the

effects of variability in the density field will be neglected.

1.3 Nature of the Environment

Air-sea interaction will not be considered in this development.

Additionally, even though it is known that surface tension is important

to momentum transport across the surface interface via capil'1ary and

capillary-gravity waves, it will be assumed that waves of these order

wave lengths are of' no significance to bottom interactions.

On the other hand, currents can be significant near the bottom.

Strong currents are cortnonly encountered in the near-shore zone and along

the continental shelf and slope. Tidal inlets and estuary mouths can

greatly modify incoming waves in localized areas  Boone, 'l974!. Usually

variabie depths should be considered in these locations since large ebb

deltas can be present. Waves can also induce nearshore currents called

rip currents and longshore currents. Western boundary currents, such as

the Gulf Stream, can produce considerable modification of the wave field.

These currents usually appear seaward of the shelf break, but "spin-of,"

eddies and "shingles" occasionally occur and advect across the she!i" re-

sulting in considerable mixing and nutrient influx. However, eddies are

secondary sources of currents compared to wind-driven circulation which

is general'iy present and can, during storms, be considerable, i.e., 1 m/sec,

in magnitude. Under such conditions, the surface displacement will be more

random than monochromatic, with considerable breaking af the waves being

present. Although the sea state is important, our primary objective is

to understand the boundary layer. Therefore, using one component will be



sufficient. The result can be generalized to complicated combinations

of wave components without additional difficulty in principle. Also,

since conditions on the shelf which would initiate significant, currents

with respect to the wave motion result in several poorly understood phe-

nomena, currents on the shelf will not be considered and the theory

developed herein will simply not be valid near strong nearshore currents.

The next assumption, that of nonsloping bottom, is reasonably true

since the average shelf slope is of the order of 0.1 . Of course,

rapid depth changes do occur in the vicinity of shoals, nearshore bars,

and the beach. These are usually connected with wave breaking and are

rather localized topographical features and therefore will not be con-

sidered. Radwan et al. �975! have obtained semi-closed form

solutions for sma1'l-amplitude waves in currents over slowly varying bot-

tom depths. Boundary layer considerations were not included in their work.

In conclusion, although the author recognizes that the atmosphere,

depth and currents can have important effects� to consider them would

1ead this investigation astray from its specif~ed purpose. Discussion

of irrotationa1ity wi11 be included in section 1.4 and the smooth and

stationary interface assumptions will be included in section 1.5.

1.4

Under the assumptions of section 1.2 and considerations of secti on

1.3, the equations governing the flow in the main body of fluid reduce

to the two-dimensional Bernoul'li and continuity equations and a state-

ment of' irrotationality. According to Kelvin's circulation theorem,

i rrotationa1ity can be assumed if the wave propaqates into an initially

irrotationa1 volume of f1uid.



u +  u ~ V! u + V p/p + gz = 0

�.2, 1.3!Vxu =0V-u=O

where u =  V, W!, V = �/Bx, 3/Bz! and underscored quantities are

vectors. The appropriate boundary conditions at the surface, z = n + d,

d being the mean water depth,

 kinematic!n +U n =W
t X

0 + �  y +y!+gz=o2 2
t 2 x z  dynamic!and

where U = g�and W = 4 . At the bottom, z = 0, the impermeabl e

condition is

�.6!W =0.

Of course, this condition will be altered in this paper, but it is assumed

in the theories discussed below. The exact solution of these equations

has been obtained only in special cases and an approximation method must

be employed in other cases .

There are over a dozen wave theories in existence  see LeNehaute,

et al., 1968!. Each has a limited range of appli cation for val-

ues of a/d, a/L, and d/L  see Figure 1.2!, where a, d, and L are the

amplitude, depth, and wavelength, respectively. The large number of

theories stem from the approximations made regarding the relative sizes

of these three parameters and the manner in which the solution is derived.

The solution is obtained in one of two ways as decribed by Oean and

Eagleson �966!. The first is a perturbation of the solution  Stokes
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waves!, and the second is a perturbation of both the solution and the

governing equations  cnoidal waves!. Solitary waves are occasionally

thought of as being in a separate class, but Peregrine �972! points

out that they are cnoi dal waves of infinite wavelength.

The perturbation scheme is employed using one of the above ratios

as the expansion parameter and the result will be valid for various

ranges of the other two. The ranges of validity of such solutions have

been investigated by Keulegan �950! and Laitone �962!, but the exact

limits of validity are not we11 established. The most generally used

theory is Stokian mainly because of its ease of application, especially

the first-order solution  commonly called Airy, or small-amp1itude wave

theory!. Higher-order Stokes and cnoidal results can be obtained from

tables  Skjelbrei a, 1959; Nasch, 1961!, and LeMehaute et al. �968! com-

pared twelve wave theories and found the cnoi da1 theory of' Keu1egan and

Patterson �940! to perform the best under conditions usually encountered

in site-specific engineering prob1ems.

First-order Stokian theory is valid for all values of d/L since

it assumes both a/L and a/d to be small while higher-order Stokes

theories are vali d in deep water when a/L is fini te  see Figure 1.2!.

Because of its uniform validity for a11 d/L and its simplicity, it is

used in this paper.

1.5 Nature of the Bottom Flow Re ime

Boundary roughness, bed mobility, and the flow regime at the bottom

are all interdependent and are discussed together. The theory developed



herein assumes a smooth, stationary bed with a linearized boundary

layer. The boundary condition for a mobile, saltating bed has not been

developed and any theory developed so far is limited by the threshold

conditions.

As mentioned previously, potential flow is used and therefore no

boundary condition on U , the horizontal velocity component, can be

satisfied at the bottom. Thus a slip condition exists, i.e., U assumes

an unrealistic value at the bottom. All fluids are viscous and while

viscous effects may not be important in the main body of our fluid, its

effect near the interface is very important for a number of reasons.

First, viscous forces near the interface are the most important source

of energy dissipation in shallow water waves. Secondly, the tangential

stress due to viscosity initiates sediment motion and, along with mass

transport, causes sediment transport. The term mass transport should

not be confused with sediment transport. Mass transport refers to the

mean Lagrangian displacement of fluid particles over a wave period and

is sometimes referred to as the wave entrainment current. Mass trans-

port also resu1ts from inertial effects appearing in the second-order

Stokian theory. The topic has been discussed by Lonquet-Higgins �958!

and more recently by Huang �970! for a 1inearized laminar boundary layer.

Sl eath �968! has noted that a porous bed enhances mass transport.

If the flow regime is taken to be laminar, the validity of assuming

a linearized laminar boundary layer has been questioned by Grosch �962!,

Iwagaki et al. �967!, and Tel eki �972! . Grosch and Iwa-

gaki et al., using different methods of solution, concluded that non-

'linear effects in a laminar boundary layer in the presence of an Airy
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wave have little effect on energy dissipation or on the magnitude of the

bottom shear stress, T = p3 u/3z I . However, Teleki found that in-2
0 0

elusion of the nonlinear terms resulted in the phase lag between ~ and

the external driving velocity decreasing from ~/4 to m/6 . The direct

measurement of wave shear stresses has been undertaken by Eagleson �962!

and Iwagaki et al. �965! for smooth bottoms using shear plates and torque

gages with the latter group making considerable improvement in instrumen-

tati on.

The next questiorI to arise concerns the conditions under which the

boundary layer can be assumed to be laminar. This involves surface rough-

ness as well as the Reynolds number. Experiments by Vincent �957! and

Collins �963! indicate that wave tank boundary layers over smooth bot-

toms will almost always be laminar, whereas prototype shallow water waves

wi11 have turbulent boundary layers. This points out the well-known

scaling problem of wave tanks. For this reason, Jonsson  'i963! and Riedel

et al. �972! have used oscillating water tunne1s for measuring velocity

profiles and shear stresses, respectively, in oscillating flows under

prototype conoi tions. The criterion developed by Collins is U 6/v = 160 ,

which is nearly 1/4 that proposed by Li �954! who used a smooth oscillating

bottom. 6 is the boundary layer thickness. Their methods of determining

transition flow were quite different; Collins used measurements of mass

transport and Li used dyes. However, Li's resu1ts were biased by the fact

that the dyes were more dense than the surrounding fluid. Kalkanis �957!

reperformed the experiments on a smooth bottom using dyes of specific

gravity 1.0 and showed that turbulence occurred at lower Reynolds numbers

than found by Li, a result more consistent with those of Vincent and Col-



lins. Kalkanis also developed semi-empirical equations for the velocity

profile.

When the bottom is rough, the critical Reynolds number will be lower.

If the roughness length is a fractional value of the boundary layer thick-

ness, the interface is called "hydrodynamically smooth;" if it is not, it

is called "hydrodynamically rough." Criteria for these terms were con-

sidered in detail by Li �954! and Manohar �955!, who obtained the sam

results whi ch are shown below along with determinations for critical Reyn-

olds numbers, as given by Einstein �972!. The data cited by Einstein

included flow over rigid, artificial ripples for linear  two-dimensional!

and irregular  three-dimensional! featured cases.  See Table 1.2!.

The term "rough" also includes consideration of bed forms. Early

studies on the initiation of sediment motion and bed form growth were

conducted by 8agnold �946!, and by Nanohar �955!, in oscillating tanks.

The bed is always made smooth, i.e., void of bed forms, when studying

thresholds of sediment motion. Bed forms are the result of such motions.

Bagnold's results were used by Putnam and Johnson �949! to estimate wave

attenuation due to bottom friction. Savage �953! performed wave tank

experiments on energy losses due to bottom friction over smooth and ri p-

pled surfaces and also losses due to bed percolation. He found that

energy was expended most rapidly while the bed was attaining its equi-

librium configuration. Once the bed becomes unstable, the boundary con-

dition becomes more complex and the boundary layer will be greatly af-

fected. It is therefore rather. important to understand when bed motion

will begin.
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Table 1.2 Criteria for roughness and flow regime

6/z > 6.54

4.02 < 6/z < 6.54
0

Transi tion

6/z < 4.02
0

where z = roughness length and

6 = boundary layer thickness = 6.5~va

Re = z aa/v = 640, 2-D roughness, a/z < 266
c 0 0

= 104, 3-D roughness, a/z < 1630

where a = excursion amplitude of bottom plate and

Re = critical Reynold's number
c

Comment: Other definitions of 6 are used in the literature, most

Smooth Boundary

Rough Boundary

Re = a o/v = 1.7 ~ 105
c

commonly 6 = vYvVa

smooth boundary



Eagleson and Dean �959! reviewed earlier work performed by them-

selves and by others on discrete particle motions on roughened slopes.

More recently Komar and Miller �974! reviewed existing data on the sub-

ject, especially that due to Sagnold �946!, Manohar �955!, and Rance

and Warren �968!. They derived the following empirical expressions for

two domains of grain diameters;

0.21  d /D!, D 05

pU / p -p!gD
2

or

0.46 % d /D! ; D .05 GR �.8!

where U is the external ve/ocity = ao/sinhkd , d is the particle
0 0

excursion length at the bottom, d = water depth, and D is the sediment

diameter. For prototype waves, grain diam'ters less than .05 cm  medium

and fine sands! will be set in motion while the flow regime is 1aminar.

They also noted that as the wave period increases, the critical value of

U also increases.
0

The development of bed forms is accomp~sied by "separation." Separa-

tion means that the flow becomes detached from the boundary and is a re-

sult of energy dissipation in the boundary layer. Separation of the flow

along a curved boundary occurs when the deceleration of the flow necessary

to maintain contact with the boundary exceeds the energy available to pro-

duce such a bendi ng of the streamlines  Rouse, 1938!. When separation oc-

curs such that the eddy sizes are comparable to the boundary layer thick-

ness, the flow must be considered turbulent. Jonsson �966! has prepared

a series of diagrams using existing data from whi ch the fri ction factor,

flow regime and boundary 1ayer thickness can be determined for wave motions.



The effect of porous bed forms on uniform flows is just beginning

to be studied. Ho and Gelhar �973, 1974! conducted theoretical and

experimental investigations for turbulent pi pe flow with such a boundary .

They concluded that the seepage flow in the bed can have significant in-

fluence on the external flow and therefore on the form resistance.

Theoretical consideration of turbulent flow regimes under waves is

essentially limited to two papers by Kajiura �964, 1968!. In the fi rst

paper, bottom friction is studied under the assumption that the eddy vis-

cosity coeffi cient is proportional to the amplitude of the bottom friction

velocity and the height above the bottom, K = k  z+z !u* where z is
Z o b 0

the roughness length, k is von Karman's constant and ub is the fric-

tion velocity. His results were utilized by Horikawa and Watanabe {1967!

to aid in the prediction of the critical- water depth for sediment motion.

They found this approach more suitable than the previous approach which

assumed the boundary layer always to be laminar and the frictional law

for steady flow to remain applicable. In oscillatory flow, the friction

coefficient assumes a dependence upon the phase difference between the

external flow and the bottom shear stress.

Cf = nT,I PU,!2

where n must be determined experimentally.

In his second paper Kajiura introduces a more sophisticated model

in which he breaks the boundary layer into three regions  inner, overlap,

and outer! just as in steady turbulent flow  see Figure 1.3!. Yalues of

K are assumed for each region and the solutions for each section are
z

matched. He also defined "smooth" and "rough,"  see Figure 1.3!. Hari-
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kawa and Watanabe �968! compared Kajiura's results to laboratory re-

sults of their own and of Jonsson �963!. They concluded that Kajiura's

values of K are not always valid and that once eddies form the neglect
Z

of the vertical velocity in the boundary layer equation is not a valid

assumption. As yet, no other turbulence model for this type of flow

has been advanced. Tel eki and Anderson �970! compared experimental

measurements of C -to the C assumed by Kajiura and found n=l/2 to

give the best fit.

Two other important comments must be made with regard to the boundary

layer. Extensive laboratory tests have been made to measure wave attenua-

tion for a smooth impermeable bottom. The findings of Grosch and Lukasik

�960!, Eagleson �962!, Lukasik and Grosch �963!, and Iwagaki et al.

�967! indicate large discmpancies between masured and theoretical val-

ues of the attenuation constant, y, even when theoretical side wall and

surface tension effects are included. All their tests were within the do-

main of Stokian theory and under laminar conditions. Treloar and Brebner

�974! recently developed a procedure for measuring the side-wall contribu-

tion and found it could be predicted very well. However, they were not

able to explain the fact that bottom losses are greater than theory pre-

di cts by a factor of 1.3.

The last comnent concerns the continuing argument as to whether or

not oscillating bed studies are a relevant means of studying bed forms

and related flows. Einstein �972!, for one, maintains that they are

relevant, while, on the other hand, Tunstall and Inman �975! hold that

they are not. Tunstall's data indicated that the pressure gradient fie]d
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is very important to eddy formation and therefore to the flow regime. A

very good review article on the topic of wave boundary layers with re-

spect to sediment transport has been written by Teleki �972!.

This section has been a discussion of three intertwined assumptions.

These are that the boundary is smooth and stationary and that the flow

is laminar and being so can be linearized. If the bed is nonrippled, the

boundary wil'I be hydrodynamically smooth for most beach and shel f sands.

The roughness length will be some fraction of the grain size. Coarse sand

has a maximum grain diameter of 1 mn. Therefore the minimum boundary layer

thickness must be about 6 m. A wave having a period more than 5 sec. meets

this requirement and as T increases so will the value of b . Most

prototype waves of interest do have periods greater than 5 sec. The main

justification of assuming a laminar oscillatory boundary layer is simply

because too little is known about turbulence at the present time to in-

c'Iude it. As comented earlier, the flow regime is most likely to be tur-

bulent under prototype conditions when sediment motion is initiated for beds

coarser than medium sand; in this case, assuming a stationary bed is con-

sisten'. to a laminar boundary layer in the real world, although it may not

be true in the laboratory. For beds finer than coarse sand, motion will

occur under laminar conditions, but the boundary condi tion for a mobile bed

with various degrees of sediment motion is not known and any theory, whether

turbulent or laminar, is bound to be invalid when the threshold is reached.

Thus we are limited to a laminar boundary layer over a stationary bed. A1-

so, if we are limited to a laminar boundary layer, indications are that

neglect of the nonlinear terms causes little error.
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1.6 Porous Bed Flow

Darcy's empirical law is taken as the governing equation within the

sediment layer. It was obtained during the 1850's by French hydrologist

Henry Darcy while studying the water supply of Dijon, France. It can be

written in its more general form as

1 - 1 1
�  u! � U =- � 'p p -pgg!
<c ~t K~

e is the porosity, K is the specific permeability, and u is the

seepage velocity. u represents a mean flow rate through an infinites-
s

mal area and is not a discrete fluid particle velocity. Porosity is

simply the ratio of pore volume to total volume. The specific permeability

is a proportionality constant. Its value will depend on the porosity some-

what, but more importantly on how the pores are connected and how uniformly

they are dispersed. A vast number of papers have been written on applica-

tions, limitations and extensions of this equation. It assumes that the

fluid is homogeneous and that the porous medium is statistically homogeneous .

Darcy assumed a linearized friction term which i' fine for "slow" flows

 see Table 1.3!. guadratic friction terms have been used for greater flow

rates. Information gi ver. by Zaslavskii et al. �968! for porous flows ap-

pears in Table 1.3. Therefore, one must be careful not to over-extend re-

suits obtained from this theory. The time dependent term can usually be
-5

eliminated for most natural conditions since K is 0�0 ! or less and

the porosity is generally 0.4 to 0.5.

4fith the exception of Savage �953!, most notable works have neglected

percolation effect . Vincent �957! noted that porosity facilitated the

the onset of .urbu1ence when grain sizes were greater than 0.24 rm.
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Table 1.3 Porous bed f'iow

1 <u D/v< 10
s

validity of Darcy's law

u D/v < 100 laminar flow
s

> 150 turbulent flow

10 " « 100 quadratic flow law

where D = grain diameter

Millikan, et al. �972! have explored the sediments on the

eastern U. S. continental shelf and found mostly medium to coarse sands

 .25 mm < D < 1 mt!. Typically, the sand an the beach will not be the

same as found on the shelf. Wave sorting and past geological history of

Putnam �949! published the first paper on energy dissipation due

to percolation and his results were corrected by Reid and Kaji ur a �957!.

Putn'am had neglected the bottom layer. Several other porous bed theories

on energy dissipation which include the boundary layer are by Hunt �959!,

Murray �965!, and Liu �973!. Each approach is different in that all use

different matching conditions at the interface. Their results will be

given in more detail later. Whether or not percolation will be an impor-

tant source of dissipation depends on the depth to wave length ratio, the

thi ckness af the bed, and the bed material. Reid and Kajiura �957! have

shown that percoiation effects are the greatest for intermediate waves.

In this range, the bottom pressure gradient will have its greatest values

and therefore induce the largest seepage flows.
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the region prevent uniformity. However, sufficiently large tracts are

statistically homogeneous and allow us to consider the porosity and per-

neability to be constant. As the wave approaches the beach, the values

of c and K may be adjusted.

The east coast shelf is notably wide especially in the Georges Bank

area off New England  over 400 km!. The shelf break is seldom more than

60 m deep south of Cape Hatteras and 120 to 160 m north of Hatteras. As

for the bed depth, seismic work and sediment coring on the Cape Kennedy

inner shelf by Field et al. �971! and Field and Ouane �972! show the

bed depth to be highly variable there and having maximum thicknesses in

the neighborhood of 40 feet. These facts indicate that waves are quite

capable of transporting bottom material on this shelf when the previous-

ly discussed work of Komar et al. �972! is considered. This is borne

out in another report  Pilkey and Field, 1972!, where observations are

presented which indicate onshore transport of shelf sediments.

Field and laboratory experiments on porous bed effects are rare. To

the author's knowledge, only one field test on wave attenuation has been

published. Unfortunately, it was done in the Gulf of Mexico at a loca-

tion where the bottom was cohesive mud and percolation was not a factor

 Bretschneider, 1954!. He believe". the bottom to be somewhat

fluidized by the wave action resulting in an elastic layer along th bot-

tom. Savage �953! has measured energy loss due to percolation in a wave

tank, and Sleath �970! has taken wave-induced pressure measurements with-

in a stratified bed, also in a wave tank. Field measurements of seepage
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velocities in the surf zone have been achieved by Reid1 and Machan
1

using hot thermister probes.

Recent geological research off the eastern and western U. S. sea-

boards has shown that significant shelf sediment transport occurs and

that the shelf material is sufficiently coarse for percolation to be a

factor in wave attenuation and to the boundary layer structure. Findings

also indicate that the material is rather constant over large areas, justi-

fying the use of a single value of K for both horizontal and vertical

di rec ti ons.

In the next section, a more detailed analysis of the above mentioned

wave-porous bed model s wi 1 1 be gi ven.

Riedl, R. J., R. Machan, "Hydraulic Patterns in Lotic Intertidal
Sands,"  unpubl i shed! . Insti tute of Marine Science, Morehead City,
North Carolina, 1971, 71 p.



2 LITERATURE REVIEW

2.1 Ini ti al Comments

In this section a review of the existing papers on wave-porous bed

interactions will be made. Also, papers dealing with the "radiation-

type" boundary condition utilized in this report will be discussed.

All of the porous bed models assume small amp1itude wave theory or

simply small amplitude motions and Darcy's law. The distinguishing

feature is the manner in which the flows are coupled. The large-scale

properties, i .e., streamline pattern, wi 11 not be greatly affected by

the flow matching conditions since the pressure distribution will remain

fairly independent of flow near the interface where viscous effects are

very strong  but 1aminar!. As f' or the flow near the fluid-bed interface,

the matching conditions are important and the theories will always dis-

agree in this region. Of particu1ar importance is the shear stress, T .

All the theories neglect all other types of interactions and there-

fore are subject t-. the limitations described in Chapter 1. Some inc'Iude

a damped amplitude, but others assume the amplitude loss over a wave-

length to be negligible and thus take it to have a constant magnitude.

2.2 Wave-Porous Bed Models

Putnam �949! published the first paper on this topic. He was not

interested in boundary layer effects in this publication since he and

Johnson  Putnam and Johnson, 1949! had already published a separate

study on energy losses due to bottom friction. The purpose was merely

to obtain an estimate of the energy loss due to the induced seepage flow.

To accomplish this, he assumed both flows to be governed by Laplace's
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equation, took the external flow to be the classical small-amplitude

wave theory and solved for 4, the velocity potentia1 in the bed,

using these conditions:

z=0= gH coshkd
5

and

z=-h

viscous force, uu /I, and the flow velocity, u, over the bed thick-
s s

ness and the wavelength and then dividing by L.

Putnam numerically approximated the amplitude attenuation of various

waves on various bottom slopes between the points d/L = 't/2 and the

breaker zone. For example, on fairly flat beaches {slope 1/300!,  ai-af}

/a,- = 10K for a 12 sec. wave. The subscripts 'i ' and 'f' denote

initial and final values, respective1y. This decrease in amplitude seems

rather small, but it must be remembered that waves traveling in water of

where 4 = gz + p/p, d is the mean wate~ depth, and H = wave height.

The subscript 's' denotes a bed quantity and the subscript 'z' indi-

cates differentiation with respect to the z coordinate. No viscous

boundary layer is included and the external wave flow is independent of

the bed flow, i.e., an uncoupled system. There is an error in equation

{2.1!. A divisor of 2 is missing in the denominator. This res.its in

an overestimation of the percolation losses by a factor of four. Savage

{1953! later noted a discrepancy when he compared experimental attenuation

to that predicted by Putnam. The average rate of dissipa.ion per unit

length and crest width is obtained by integrating the dot product of the
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shallowing depth experience a monotonic decrease in wavelength. At the

sari. time a monotonic increase in amplitude results once the wave enters

shallow water. Had he calculated the amplitude difference on a nonsloping

bottom, the percentage would have been higher, especially for intermediate

depths. Also, he made another error  his eq. 18! which led him to an er-

roneous evaluation of the effect of bed depth. This error was found by

Savage but the initia1 error was not found and corrected until 1957. In

the meantime, his results were used and expanded by others, most notably

Bretschneider and Reid �954!.

Reid and Kajiura �957! finally recognized Putnam's most major mis-

take and made three improvements. �! They coupled the flow regimes,

both of which were potential flows again, with no boundary layer, �!

they included a damped free surface elevation n = a-e, where y .

is the attenuation coefficient and �! they included the time dependent

acceleration term in Darcy's law. The matching conditions at the bottom

were

p = p and W = w
s s

i.e ., continuous pressure and vertical velocity. The vertical velocity

is zero at some finite bed depth. This approach, as with Putnam's, re-

su'Its in a discontinuous horizontal velocity at z =. 0. Their method of

calculating the average energy loss per unit time is to integrate the dot

product of p and w over a period and divide by T. Several inter-
0

esting phenomena resulted from the bed being porous. As with Putnam,

the percolation has a negligible effect on wave length, phase speed, and

group velocity. In addition, the maximum energy 'toss occurs at the rela-
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defining u = -g -! and w -g -! . g satisfies Laplace's equa-
x z z x

tion and v7 p = yt, where 4 is the stream fmction. At the surface,2

along with the kinematic condition, a vertica1 stress condition was

used;

�.e!-p/p + 2' = 0
Z

z=deq

while at the bottom, the vertical stress was taken to be continuous;

p + 2~ = p + 2v w ! �.5!z = 0 ~

The vertical velocity component is assumed continuous and the horizontal

velocity component is taken to be zero. It is very unlikely that the

vertical stress will be continuous across the interface. The bed is

taken to be infinitely deep which is not a realistic assumption.

Hunt's conclusions are �! the damping is essentially the sum of

the boundary 1ayer damping with an impermeable bottom and the bed damp-

ing given by Raid and Kajiura, and �! when neither the porosity nor

tive depth of d/L = 0.13, which indicates waves of intermediate wave-

lengths   or period! are attenuated at the highest rate by the seepage

flow. The reason is that these waves induce the greatest pressure gra-

dients at the bottom. This selective attenuation should gradually change

the energy spectrum of a wave group containing many different frequencies.

Hunt �959! was the first to include the effects of viscosity in

the fluid regime. His approach was somewhat different from the usual

scheme of simply correcting the external potential flow near the inter-

face. He considered the case of small amplitude motions in a viscous

fluid and therefore solved the linearized Navier-Stokes equations by
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the permeability are small, there are two possible wave velocities. The

second result must be viewed with skepticism since Oarcy's law and the

boundary conditions applied would most likely fail to be valid for beds

with pereeabilities of that magnitude. He also found a slight increase

in the wave period, T, due to the porous bottom.

Murray �965! did an analysis similar to Hunt's in that he also

solved the linearized Navier-Stokes equations over the entire fluid

region and allowed the bed to be infin~tely thick. The surface displace-

ment was not damped. Unfortunately, the equation for the bed flow is not

Darcy's law since the time-dependent term is multiplied rather than di-

vided by the porosity.

Murray recognized that the stresses are not continuous across the

interface and developed a new boundary condition ~ The criteria for this

condition is that the rate of doing work should be conserved across the

interface. The bottom surface is conceptualized as being a series of

irregularly spaced rectangles of the same height. His condition was

stated as

where Ql and Q2 are the components of the seepage flow in the x

and z directions, respectively, and p and p are the pressures in
s

the fluid and %he bed, respectively. Neither Hunt nor Murray maintain

that the two pressure fields are continuous at the interface.

Liu �973! did a rather straightforward and uncomplicated analysis.

He made a new innovation by including a non-slip condition at the inter-

face so that both the horizontal and vertical velocity components are
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2.3 The "Radiation-T e" Condition

Beavers and Joseph �967! published a paper which discussed a

boundary condition for flow at the fluid-bed interface. It is a condition

on the horizontal component and is written as

u =  u-u!a

s
z=O,

where K = permeability, u = fluid velocity, u = porous bed flow,

as given by Darcy's law, and a is a constant whose value depends on

continuous. The flows are governed by Laplace's equation subject to a

linearized bottom boundary layer and an infinitely deep bed. The sur-

face elevation is not considered to be damped as assumed by Reidand Kajiura,

and Hunt. Therefore the attenuation coefficient has no effect on any

other derived quantities. As in Hunt's paper, the vertical stress is

continuous which implies that the vertical shear stress is continuous

since p = p at the bottom. The horizontal stress is also assumed to
S

be continuous. The dispersion relationship is obtained from the linear-

ized kinematic surface boundary condition, equation �.9!. He found the

same two values for cr as Hunt had found, and the porous bed dissipation

is found in a similar manner as in Putnam's paper. A comparison between

theory and Savage's experiments indicated a tendency from

low to high values as d/L decreases across the intermediate range.

There appears to be an error in his evaluation of the boundary layer at-

tenuation factor. The results obtained by Hough �896! and the writer

for the impermeable case are equal, and are twice that given in Liu's

equation 28. No correction is made in the errata which was published in

October, 1974, or in the discussion by Dalrymple �974!.
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the porosity. It is similar in form to the "radiation-type" boundary

condition encountered in heat conduction problems. In this case, it is

essentially a statement concerning the shear stress distribution across

the interface. In the case of two adjacent Newtonian fluids flowing at

different rates, the shear stress must be continuous since neither fluid

can sustain shear stress. On the other hand, the bed is capable of sus-

taining a shear stress and, therefore, although the velocity profiles

should be continuous, it should show a marked discontinuity in slope.

The investigators performed a series of experiments using a Poise-

uille flow arrangement to test the validity of this hypothesis. They

used two types of artificial beds, one "granular" and the other a "lattice-

type '. The fluid was a 100-grade oil. The paramete~ measured was the dis-

charge, g , from between the top plate and the bed interface. The

fractional increase 4 =  Q � g,!/q. , between Q and the theoretical
i

discharge for flow between two impermeable plates, g, was plotted.

Some of this data is reproduced in Figures 2.1 and 2.2, with an additional

curve added. The additional curve is 4 for the case of continuous hori-
C

zontal shear  see Appendix 7.1!. In Figures 2.1 and 2.2, d represents

the gap between the two boundaries. For large values of d/~ and

small values of K, the separation between C and the data is quite

large. The other curves represent theoretical results using the above

boundary condition. The a's shown are those which give the bes. fit.

The values of a/~ for the curves given by Beavers range from 30
-1

to 150 cm and are listed in Table 2.1.

Recently three separate papers were published concerning this

'slip' condition, Saffman �971! published a statistical analysis
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Table 2.1. Values of 0/~ from Beavers and Joseph, �967!

K cm ! a/~  cm !Material

1.6 X 10

6-5 X 10

Aloxi te  particulate!

Alaxi te

Foametal  ' lattice!

25.10

39.10

8.2 X 'IO

7.1 X 10

7.1 X 10

3.9 X 104

9.7 X lo

1.2 142

0.8 95

73

.7B 79

extending Darcy's law to nonhomogeneous porous media. From the limiting

case of a step function distribution of K and e , a boundary condition

on the theoretical derivation of Richardson �971!. The apparatus used

to test the radiation condition involved a torsi on pendu',um suspended

above a grooved rotating plate. The plate simulated a porous bed whose

porosity and permeability were determined by its design. By measuring

the torque exerted on the torsion plate a comparison could be made with

theoretical predictions and therefore test the condition's validity.

Their results supported the hypothesis.

very similar to Beavers' was obtained and it. was suggested that the u
s

term could be dropped. Taylor {1971! published an experiential work based



3 THEORETICAL DEVELOPMENT

3.1 Initial Comnents

The wave-porous bed problem involves the solution of two coupled

flows. The major regions are the fluid and the bed. The two boundary

layers, shown in Figure 3.'t, are required in order that the flows satis-

fy the listed physical conditions at the interface. Since viscous ef-

fects in the main body of fluid are sma11, the flow field can be deter-

mined from the equation of continuity which, in turn, can be expressed

in terms of the velocity potential.

The velocity potential is defined from the relationships U =  P! and
X

W = �! . U and W represent the horizontal and vertical velocity com-
Z

ponents of the wave field. The subscripts, x and z, indicate differ-

entiation with respect to the two coordinates. Equation �.1! is La-

place's equation. One condition at the surface and one condition at the

bottom can be satisfied by the solution of Laplace's equation. The re-

maining condition at the surface is satisfied by relating o, the fre-

quency, to k, the wave number, in terms of physical quantities such as

the water depth, d. This relationship, called the dispersion relation-

ship, governs the possible combinations of these two wave parameters.

Darcy's law, shown in Figure 3.1, expresses a linear dependence be-

tween the seepage flow and the pressure gradient. The quantities u
s

and w will be used to denote the horizontal and vertical components
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3.2 Solution for the Potential Field

In this section, the solution for the flow in the main body of the

fluid is found. The kinematic boundary condition at the surface will

be applied, but application of a bottom boundary condition must wai t

until the solutions for the bed and boundary layer flows have been de-

rived.

As mentioned in .ection 1.4, the exact solution of Laplace's equa-

tion subject to conditions �.4!, �.5!, and �.6! is not known and

requires the use of an approximation method. Of course, equation �.6!

will be replaced with a nonhomogeneous condition because of the verti-

cal flaw through the permeable interface. P and q , the vertical sur-

face displacement, are expanded inta perturbation series,

"2
e, + <2+" ~ �.2!

and

rl=cq +c rl + ~ ~ ~
1 2 �.3!

of the seepage flow as derived from Garcy's law. The subscript "s"

will denote a sediment-mlated quantity. No such subscript is used with

the fluid-related quantities. The seepage velocity in Darcy's law is a

statistical mean discharge per unit area. Conceptually, the flow in the

bed is treated as if it were a single phase media. This approach is jus-

tified since the velocities under consideration are averages and do not

represent the real interstitial flow within the pores of the bed. Thus

the velocity field is seen as having a value at all points in the bed,

whereas in reality, the flow is nonexistent within the sediment parti-

cl es.
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where the expansion parameter, c, is assumed to be small relative to

unity. For small amplitude waves, it will be shown in Chapter 4 that

c is of the order 'ak' where 'a' is the wave amplitude. n represents

the surface e1evation with respect to the mean water level, d. The

boundary conditions at the surface are given as

�.4!n + U ~ rl = W = 4  kinematic! z = q + d ,
t x z

+ �/2!  > + >! + gz = 0  dynamic! z =@+ d,
2

�.5!

>Id+ = >Id +  n-d! V,Id + ~ ~-

where "! " indicates the evaluation of the function at point z = d.
d

The perturbation expansion of 0 is substituted into the Taylor's

expansion of 4I~ . The resulting expression is substituted into thed+g

surface boundary conditions, �.4! and �.5!. The first-order boundary

conditions are obtained by retaining only the terms having c as a

coefficient.

�.7!z = d

and

�] ! t = -9~]  dynami c! �.8!z=d

The implementation of the perturbation series has resulted in the lineari-

zation of the surface conditions. Since only the first-order solution is

considered in this paper, the subscript "1" will be dropped for the

where the subscript "t" denotes differentiation with respect to time.

Since q is not known, the evaluation of 4 or any of its derivatives

at z = q + d must be approximated using a Taylor's expansion about z = d.
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0 =  A coshkz + Bl sinhkz! e ~ix
�. 9!

where X = kx-vt. x is the horizontal coordinate and the wave is propa-

gating in the pos i ti ve x di recti on.

Substituting g and q into �.8!, the fol'1owing relation between

the integration constants is obtained.

-iaa
1 ksinhkd �.10!

The condition at the bottom is that the horizontal and vertical

velocity components are continuous . The conditions cannot be applied

until the general solutions for the bed flow and boundary layer motions

are obtained since the f'1ows are coupled. Expressions for U and W

can be obtained by di fferentiating 4 with respect to x and z,

respectively.

U = ik A coshkz + B sinhkz! e X �.11a!

and

W = k  Al sinhkz + Bl coshkz! e ~ �.11b!

The pressure is related to g using the linearized Hernou11i equation.

p = -p0 + pg  z-d!
t

sake of simplicity and a'tl quantities derived are understood to be first-

order approximati ons.

The so'tution sought is periodic and therefore g is assumed to be
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or

p = i pa Alcoshkz + Blsinhkz!e'" + p z-d!g �.12b!

where p is the fluid density and g is the acceleration of gravity.

3.3 Solution to the Porous Bed Flow

Darcy's law, as stated below, is usua11y solved as a potential flow

problem  Zaslavskii, et »-,-1968! using the relations

�.13!

and

VC, St RS U S�  w! +g =-- p � pgz!1 1
z s

�.14!

porosity, and K is the permeability. Since continuity must a1so apply

to the bed,  u ! +  w = 0. It follows that � !�+  W ! = 0.
From �.13! and �.14!, it is seen that U and W are expressed as

s s

the gradient of a function. Therefore, let

�.15!U =  g ! and W  $ !

n
Substitution of �.15! into the continuity equation implies V ! = 0.

s

Substituting �.15! inta �.13! and integrating over x, we find

= - - p - pgz! + 01

U S 2 �.1S!

Let

2e" + B2e !eix + G z! �.1 S!

where v is the kinematic viscosity, U is the dynamic viscosity, c is the
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From Laplace's equation,

G z! = C z + 0-

The condition at z = 0 to be satisfied by this flow is continuity of

pressure. The potential pressure field is assumed to be undiminished

across the boundary layer. To prove this point. the vertical momentum

equation must be considered since it contains the  p! term. The

usual approach  Schlichting, 1968! is to nondimensionalize the momentum

velocity is determined by the ratio, K/p , which has a maximum value
-3 3

of 10 cm ~ sec/gr. The increase in w at the interface over the

value of zero for the impermeable case remains small compared ta U
0

and the standard boundary layer approximations remain valid. The sub-

script "o" denotes evaluation at z = 0. Thus,

-i'
p ~ 1 ~ e'X+~+0

s 0 g 9 2 �.20!

Combining �.19! and �.20!,

-1 GA1
A2 + S2 =

equations and show that all the terms in the z equation which contain

w are small compared wi th the terms in the x equation. If this is

so,  p! equals the sum of a number of small terms and is therefore

small itself. In this case, the situation is somewhat different since

percolation across the interface is allowed. However, the seepage
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and

D =~+ Dd
v 2

�.22!

In order to apply the boundary condition at z = -h, an expression for

w must be obtained. This is achieved by solving {3.14!.
5

w =    w !. + vc J' e~c ~K {4 ! dt! ~ e
s s 1 o s z

�. 23!

If we assume that the motion is initially zero,  w !. can be dropped.
S i

Perfoming the integration results in the following expression for w
5

s vc-ivK  A2e - B2e e + KCkvcK kz -kz ix

The condition at z = -h is w = 0. Application of this condition
s

results in two expressions.

�.25!

and

C = 0

From �.16!, �.17!, �.18!, and �.22!,

p = -u A e + 8 e ! e " + pg z-d!
s 2 2 �.26!

and from continuity,

ikgcK A kz B -kz lg �.27!

At this point, we return to the fluid regime and solve the boundary layer

equations.
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3.4 8oundar La er No. 1

As discussed in the introduction, a linearized laminar boundary

layer is assumed. The criteria for this assumption is strongly depend-

ent on the expansion parameter, c, and will be derived in Chapter

4 once the solutions are obtained. The x-momentum equation is

u -vu =- � p
t zz p x xt ' �.28!

If u = !�+ u, �.28! becomes

�.29!u -uu =0

is

�-1 !bz + lgu = Ale �. 30!

b = + J  s/2~I

The condition at z = 0 is the "radiation-type" condition described in

Chapter 2. When the decomposition of u is employed,

. = � ' u-+U-u!-U
Z s z

K

�.31!z = 0 .

The decomposition of u into a potential component plus a viscous cor-

rection term, u, is discussed in Phillips �969!. As z increases

away from the interface, viscous effects decrease to an insignificant

amount which implies that u approaches zero. The solution ta �.29!
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Substituting the expressions for u, u, and U into �.31! and
s

evaluating at z = 0 yields the condition

ikuA .k2B +   a + �-i!b! A- a  A + B ! P � 32!
1 1 ~ 1 1 ~ 2 2

ikvcKWh&l'8 X = ~~~ !o~j

An expression for w is obtained from continuity;

iku

 T-i,% � ' 33!

3.5 Boundar La er No. 2

necessary since both A2 and B have been uti1ized in two other

conditions, �.21! and �.25!. The matching layer adds another inte-

gration constant which makes the total number of constants equal to the

number of boundary conditions  not including the dynamic surface con-

dition!. As in boundary layer No. 1, viscous effects decrease away

from the interface and approach zero at some distance away from the

bottom.

One of the implications involved with the "radiation-type" boundary

condition at z = 0 is that viscous effects diffuse at least a small

distance into the bed. The extent of this viscous penetration depends

on the permeability and porosity. Although this distance is probably

very small for the bed materials under consideration, the effect on the

shear stress may prove to be significant. As mentioned in section 3.1,

the matching of the horizontal velocities at the interface is consistent

with the idealized bed flow. Introduction of this matching layer is
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 u ! +  u ! - �  u ! � � u = �  p - pgz!1 1 1
szz sxx vc st K s p s x'

�.34!

�.34! is the horizontal momentum equation. The vertical equation has a

similar form with the differentiation of the pressure term being with

respect to z rather than x. If u is decomposed in the same man-
s

ner as u, i.e., u = u + u, �.34! becomes

 u ! +  u ! - �  u !
s xx s zz vK s t K s �.35!

The condition to be satisfied at z = 0 is

u =U+u -u
s s

�.36!

Equation �.35! can be simplified by making use of the phase relation

between x and t. Since we are dealing with trigonometric functions

having X in their arguments, a relationship between 3 /Bx and2 2

3 / Bt e xi s ts and i s s tated be 1 ow.
2 2

 k/cr! 3 /at = a /ax �.37!

Using �.37! and applying a Fourier sine transformation on �.35! re-

sultss in

f" -  -! � -  -!  .a 2 f' a 2 2 1 ix
k vc k K

= -  k! r ikA1 1 -X A2+B>»e �.38!

The equation utilized in boundary layer No. 2 is a result derived

by Brinkman �947! for a field of closely packed spheres. This equation

has been discussed by Batchelor �974! and is written below.



The parti cul ar integral is

n~ Xi

�.39!

where g =   � ! ~   � ! and c =   � ! ~  r + � ! . The inverse is given bya 2 1 02 21
k k k

u = � f t sin  rz!dr, wbicb can be evaluated as2

s 'lT 0

 k
 ~9z+ix
us a �.40!

where 9 =  k - � + <!,  De Haan, 1858!. Using the continuity2 ai 1 1/2

equation,

-i ku
W �.41!

whiCh a110ws the 1ast remaining COndition, that Of a COntinuOuS maSS

flux across the interface, to be satisfied.

W +w -wi -wi =0
0 0 S 0 S 0

Here f is the Fourier sine transform of u and r is the transform

parameter. The apOStrOphes denate differentiation. The terms enClOSed

in parentheses on the right-hand side of �.38! represent the va1ue of

u at z = 0 as determined by matching velocities. �.38! is a linear,

nonhomogeneous, second-order di fferential equation in time. The compli-

mentary solution is the sum of two exponential functions, one of which

is decaying and the other grows in time. f is bounded, which elimini-

nateS the latter. Since we are not interested in transient effeCtS, we

will consider the time to be large enough to cause the complimentary

solution to be insignificant in comparison to the particular integral.
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4 DISCUSSION

4.1 Initial Coments

4.2 Potertial Field Results--Fluid Re ime

The velocity potential, g , is found to be essentially the same

as given by Airy wave theory for natural conditions. The sfnhkz term

is due to the porous bed modification of 4 and approaches the value

zero as z ~ 0 .

 ~hk.!   I!   h: .Ikh!2 2 1/2

k sini!kd ~ u !Z sini!kd

~ s'n  x + 8* t v!! , �.1!

Knowing the solutions and the integration constants, it is now pos-

sible to derive expressions for the physical quantities of interest. As

seen in Tab1e 3.1, the integration constants are quite lengthy and con-

tain real and imaginary components. For natural conditions, quite a num-

ber of simplifications can be made with the establishment of the appro-

priate criteria. Appendix 7.2 lists the parameters appearing in the in-

tegration constants with their orders of magnitude. In the following

derivations, the calculations are usua'lly long involving much algebra.

It serves no purpose to reproduce them here. The procedure in a11 deri-

vations is to find the quantity in terms of A, 8, A, A and 6,

separate the real from the imaginary components and finally simplify

the result using Appendix 7.2. Therefore, no approximations are made

until the final result is obtained.
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The pressure distribution remains unaffected by the porous bed since

is virtually the same as in the impermeable bed case. The pressure is

written as p = -p! + pg z-d! or
t

2

' ~sinh d
aa coshkz

This result supports the approach of Putnam �949!, who left the bed and

fluid motions uncoupled and simply used the pressure field of an Airy wave

to drive the bed flow.

Now that an expression for P has been obtained. the value of

can be derived by comparing the magnitudes of the 1inear terms and the non-

linear terms in �.5!, i.e, dynamic boundary condition. When this is done,

it is found that c -" g /g = ak . Therefore this wave theory is valid
x t

for ak «1, i.e., the amplitude is much smaller than the wavelength.

It is also because of this fact that the nonlinear terms can be dropped

from the laminar boundary layer equations.

4.3 Potential Field Results--Porous Bed

The value of 4 is the same as Putnam �949!, notwithstanding his
s

afore-discussed error.

n +9 d

~s vk sinhkd-coshkh v

s k sinhkd coshkh

"s vsinhkd coshkh
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and

s vsinhkd.coshkh

The reader should recall that z is negative in the bed.

4.4 Boundar La er Results

The result for u is

-bz
 x+' *!'

Since a decrease in u/~ indicates less resistance to the boundary

layer flow as seen from the boundary condition, it will affect a decrease

in u . Therefore u = U + u increases in magnitude as does the phase

advance, 8*, because U and u have opposite signs.

w . cos X+hz+0*-m/4! .aake

~ bsinhkd

Comparing w to u, it is seen that u is greater by a factor of

approximately L/6 .

Figures 4.1 and 4.2 show the boundary layer profiles for two dif-

ferent values of a/~ . There is an appreciable difference between

the two examples i n the lower section of the layer. Note the value of

u . To illustrate another trend, Figure 4.3 plots u /U over a wave
0 0

period. Finally, Figure 4.4 shows the dependence of u on the phase
0

angle X . As a/~ decreases, there is a steady phase advance which

can be substantia'1 for small values of cL/~ . The program, UBLI, given

in Appendix 7.3, can be used to calculate the boundary layer profiles at

vari ous values o f x .
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.1 .2 .3 .4-.6 -.5 -.4 -.3 -.2 -.l 0

u / U

Figure 4.4 Relative bottom velocity vs phase angle curves for values

of a/~  cm !, T = 8 sec, v = .Ol cm /sec
-1 2
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The boundary layer thickness is a function of the period

� ~vTa ! . Figure 4.5 shows that short period waves have a

6 = 0.5 - 1.0 cm., as for boundary layer No.2 6 = ~ < '10 cm .
-3

Thus this layer is so thin for ordinary porous beds that its thickness

is merely a fraction of the grain diameter. It has been noted by sev-

eral investigators  Murray, 1965! that the bed can become substantially

fluidized near the interface before significant motion occurs, i.e., the

bed reaches a "quick" state. If this is so, then the permeability will

be greatly increased and the layer will extend deeper into the bed,

thereby encompassing the first grain layer. This effect would decrease

the surface shear stress but increase the form drag of the interstitial

flow on the particles. The correction velocity in layer No.2 is

z/vV
u = �  cosXaae cos +0 aK

s sl nhkd v
� ~ sinx! z < 0

Unlike its counterpart u, u has no depth dependent phase. An ex-

ample of the velocity profile across boundary layer No ~ 2 is shown in

Figure 4.6. Note that the negative scale is amplified in order to empha-

size the flow reversal within the bed.

4.5 Stream Functions

The stream function is defined by

u=-p and w=$
z X

The stream function in both the major flow regions is modified near the

interface by a 4 which corresponds to a u . The stream function can be

«und for the fluid domain by utilizing �.11! and integrating �.12!.
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 a~echkh!
kevin

ao sinhkz
sSi~h<d   k cosX + 1

coshkz cos  x+<+0*! ! �.13!

The second term represents a modification to the impermeable case. Its

amplitude is small compared to the first term, except near the bottom

where sinhkz approaches zero and coshkz approaches one. Under the

approximations applied, the value of the second term depends on b

the parameter arising from the boundary layer solution and upon OI/~ ,

the parameter given in the boundary condition. It also has a phase ad-

vance of ~ m/4 and derives its existence from the pumping action in the

bed. As can be seen in Figure 4.7, the streamlines in the bed intersect

the interface .in advance of the external flow.

The stream function for the porous bed flow is

Ae

s kvsinhkd-coshkh �.14!

which is 90' in advance of the potential field stream function.

The approximate corrections to the stream functions in the boundary

layers are given by

~ < b sinhkd

and

 cosx-
-aa~ e cos 8*! oK

s s n d SihX!
V
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10

-4

Figure 4.7 Stream1ines L = 100 m, d = 13 m, h = 7 m, a = 1 m,
K = 10 cm, a/~ = 100/cm v = .0] cm /sec

-6 2 2



60

The last term in g is retained only because it is approximately 90'
s

out of phase with the First two terms. The program called STREAMS found

in Appendix 7.3 is used to calculate the stream function values in both

the fluid and the bed f' or any size depth-increments and at phase incre-

ments of m/8,

4.6 Shear Stress

The shear stress at the interface is the main cause of sediment motion.

Figure 4.8 shows the nondimensionalized shear stress with a representative

number of measurements from Teleki and Anderson �970!. the quantity v max/p.
0

U U is proportional to the friction coefficient as stated in Equation �.9!.
0 0

Unfortunately all of their data lies in what is considered to be the

transition region �5 < U v'~vga /v <910!. Also shown is the result
0

from Kajiura's �968! theory f' or Cf with n = 0.5. Teleki's data was

co11ected using an impermeable sloping bottom  slope = 1:12.5!. Nonethe-

less, the theoretical curve shows a correct trend across the transition

zone. The laminar bottom shear stress is given by

 sinhkd

The data points in Figure 4.8 are given in Appendix 7.1. The program

DISSIP in Appendix 7.3 can be used to calculate both the dimensional and

nondimensional forms of
0

4.7 Ener Dissi ation and Attenuation Coefficients

Energy dissipation occurs in all the regions. The va1ues of d/L

and h have the greatest affect on the relative importance on the energy



E O

C!
CD

CD
C>
CD

O

QJ
CY,'

O

CJ

'O t4

CJ

III

O O

h4

tip

O~ ~
th

0
I

O



62

loss in the three major regimes. To calculate the rate of loss in the

fluid region, Raleigh's dissipation function is employed  Rouse, 1938!.

Contributions will arise from the external flow and the boundary layer.

Energy dissipation is given by

L d
2D = 2p j j Lu + w + �  u + w ! ] dzdx

x z 2 z x
�.18!

where majar cOntributorS tO fluid dOmain 'lOSSeS are giVen by

"'2 2 "" -2
D = 4u f j [U + W ]dzdx + p f j  u dzdx

0 0 0 0

�.19!

The first term is due to the potential flow and the second is from the

boundary layer. The first term is evaluated as

Df = 4~a a cothkd,2 2 �.2O!

is

~bL  
bl 2

ao 
 �.21!

The porous bed rate of loss is calculated in the same manner as

Putnam'S �949! and Liu'S �973! determination, and iS

K a L0 = ~ f J  w + w ! 4ad< = ~  ~p<d! tanakh . �.22!

This is exactly the same result as obtained by Reid and Kajiura �957!.

Figures 4.9 and 4.10 show the re'lative contributions of Dbl and D b

for a typica'l wavelength in various depths of water and over beds of

various thicknesses. Figures 4.11 and 4.'l2 compare theoretical rates of

energy loss to experimental values from Savage �9S3!. All of Savage's

waves were intermediate waves and his data is given in Appendix 7.2.

an expression identical to Hough's �896! result. The boundary layer loss



1.0

.90

.80

.70

.60

bl
.50

Dt .40
.30

.20

.10

.10 .20 .30 .40 .50 .60 .70 .80 .90 1 0

Figure 4.9 Fractional dissipation due to boundary layer vs
depth to wavelength ratio curves for various bed

thicknesses. L 100 m., K 10 cm

u = .01 cm /sec, a/~ = 100 cm
2 -1



64

.70

.60

.50

~b0 Dt .30

0 .80 .90 1 .0.10 .20 .30 .40 .50 .60

d L

f orous bed dissipation to total energyFigure 4.10 Ratio of porous e is '

L = 100 8,loss. urvesC for va ri ous bed depths

'~K = 100/cm, v = .'Jl cm /secK=10 cm



65

.10

.09

.08

.07

.06

.05

.04

.03

.02

.Ol

.Ol .02 .03 .04 .05 .06 .07 .08 .09 .10
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The attenuation coefficient, y, is defined as D/2E . The energy,

E, of a small amplitude wave is pga L/2 .2

-D = E = pgaa L and a = a ! C where C i s the group vel oci ty and
t x t g g

equals the rate of energy transmission in the wave, so

a -~2E -~a
x pgaC L C

Therefore,

a = a e ""! g = a.e ~
1

It is found that the dispersive relationship obtained by satisfying the

dynamic surface condition which was not utilized in section 3 does not

change from the impermeable bed result under the simplifications made.

The result is a definite relationship between o and k in terms of the

water depth.

a = gktank kd .2=

Therefore the phase speed is unaltered and the group velocity from Airy

theory,

C = � = �  ~ ~ tanhkd! � + . !da 1 2kd
g dk 2 k sinh d

can be assumed.

This value of C was used in interpreting Savage's data. The
g

program DISSIP was used to determine the energy losses for both Savage's

data and the losses indicated in Figures 4.9 and 4.10. This program can

be used for either discrete data or for systematically changing the values
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of the wave, bed and boundary condition parameters. Substitution of

certain cards can change the output from dimnsiona1 to nondimensional.



5 CONCLUSIONS

It has been shown that porous bed effects can produce significant

adjustments in the structure of the bottom boundary layer. The results

expressed here are subject to rather stringent restraints, i.e.. that

the bottom boundary layer is laminar and that the bed is stationary.

Nonetheless, understanding of the laminar case is valuable to the un-

derstanding of the transition and turbulent flow regimes. Also, knowl-

edge of the shear stress is a prerequisite to prediction of the thresh-

old conditions. At present very little data exist on the boundary layer

structure and the shear stress related to wave motion above a porous bed.

Since the layer is typically very thin, measurements are difficult and

new techniques need to be deve'loped.

As for the radiation condition, for successful application to be ac-

complished, determination of e for natural bed materials is required.

The properties of the bed at the interface may not be typical compared

to the gross properties when pressure gradients and flow fields are pres-

ent. If this is the case, the values of a , c , and K will be altered.

The question of whether sediment motion is a sudden event or is preceded

by partial fluidization of the interface is a pertinent question. Once

bed motion begins, the boundary condition becomes invalid and a new con-

dition must be applied. A great deal of experimentation will be required

to determine its form.

A direct extension of this paper is to determine mean lift and drag

forces on individual particles. Exact calculation of these forces is

possible since the flow pattern at the interface is known. Figure 5. l

shows a typical velocity profile and the lift and drag forces. The drag
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Figure 5.1 Forces acting on a sediment particle
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force, FD, contributes to the vertical force due to the moment about the

contact point with the adjacent particle. The drag force is approximately

equal to ~ ~  m D /4! where D is the sediment particle diameter. The2

lift force, FL, approximately equal to pu 1' pu J J u ! dA where I'
is the circulation about the particle and A represents area. The lift

and drag forces are opposed by the submerged weight of the particle, i.e.,

F - p -p!g x0 /6!. With these calculations, the threshold conditions3

9 s

can be approximated analytically. The author plans to continue this work

and complete these calculations.
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Appendix 7.1

Derivation of 4



As described in section 2.3, the determination of C facilitates

the evaluation of u . In order to clarify the implications of assum-

Poiseuille flow:

u ~ � p ~2F1
zz w x

x>0

Solution:

u= Fz+Az+B

Porous bed flow:

 u ! - K u = 2F z<0

So1ution;

u = Ce + De - 2 KF
s

The solid boundary of the Poiseuille flow is located at z = d and the

bed is considered to be infinitely deep.. Tne boundary conditions are

u = 0 at z = d.

u  u at z=0.

3. u = u at z = 0.
s

4. u is bounded as ~zI increases.
5

The values of the constants are evaluated as

8-

ing a constant velocity shear across the fluid-bed interface, the quan-

tity C was added on to the Figures 2.1 and 2.2.
c
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C=F2-~ K

where z = d/~ . The values of Q and Q. can be determined by in-

tegrating u fram z = 0

 }Q = - F  � !
6

toz=d.

2dt|=-F  + !!

Finally,
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DefinitionParameter Val ue

	0 cm
3

	0 sec

Pe rmeabi 1 i ty

Porosi ty 0.5

10-' -10'

10 - 10 /cm
2

� ~ 10 /cm

<10 cm

Expansion parameter < 0.10

Orders of magnitude for physical parameters

Wavelength

Period

Kinematic viscosity

Density

Dynamic viscosity

Wave number

Frequency

10 cm /sec

10 gr/cm

10 gr/cm sec

<10 /cm

<10 /sec

<10 /cm

<10 cm



Data from Te1ekh and Anderson �970!

Re

60

112

122

224

322

666

1060

S3

.048

.021

.026

~ 034

.025

.020

.017

.009

. 006
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Data from Savage �953!

L cm! 1n H /Hf!Run

4. 4710. 3

15. 2

22.8 92.0

124

154

2.14

Length af tank test section, 't829 cm

29
28
27
26

25

24
22
23
21

20
11
10
19

9
18

17
8
7
6

15
5

4
14

2
13

3

12
1

77
78
76
75
73

72
74

d cm! K 10  cm !

71. 3
71. 3
93. 0

109. 7

83. 2
109. 7
131.1
131.1
131.1

91.4
91.4

126.8
126.8
153.6
153;6
153.6

2.49
2.71
2. 09
1.99

1. 51
1. 39
1.08
1.37
1.02

.64

.65

.68

.68

.67

.70

.73

./3

.72

.72

.75

.74

.61

.63

.6

.52

.60

.62

.62

.31

.33

.34

.35

.36

.36

.35

.098

.107

.093

.093

.062

.068

.057

.073

.054

.026

.026

.027

.027

.027

.028

'.037

.037

. 036

. 036

. 038

.037

. 035

.036

.036

. 036

.035

.036

.036

.013

.013

.017

.018

.021

.021

.020
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C PROGRAM TO CALCULATE BOUNDARY LAYER PROFILES OVER A POROUS BED
C UBLl=kORIZONTAL VELOCITY/MAX EXTERNAL VEl., UO MAX!
C APM=BOUNDARY PARAMETER, PROPORTIONAL TO 1/SQRT PM!, PM=PERMEABI
C T=PERIOD, Z=VERTICAL DISTANCE FROM INTERFACE
C M,M6,M7= ¹ OF VAf UES OF T,APM,AND Z RESPECTIVELY
C Z'1=RELATIVE VERTICAL DISTANCE FROM INTERFACE MRT B.L. THICKNESS

DIMENSION UBLl �0!, AAPM�!
M=6
M6=4

M7=9
P I=3.141593
V=0.01

10 FORNAT{4F10. 2!
READ�,10!  AAPM J!,J=l,M6!

2 FORMAT /,3X,'APM',9X,'0',8X,'22,5',8X,'67.5',8X,'90',7X,'1
212.5',7X,'135',7X,'157.5',7X,'180 DEGREES' !
WRITE�,2!

C DO LOOP FOR T
DO 2000 I=1,M
T � 2*%I

WN=2. 0*P I/T
B=SQRT MN/�.0*>!!
BLT=4.6/B

C DO LOOP FOR Zl
DO '1000 L=l,M7
Zl= M7-L!*4.6/ M7-1.0!

20 FORMAT ///,3X,'T=',F6. 1,3X,'V=',F5. 3,3X,'BLT=',E9.2,3X,'Zl=
WRITE�,20j'T,V,BLT,Z1

C DO LOOP FOR APN
DO 1000 J=i,M6
APM=AAPM{J!

C DO LOOP FOR PHASE ANGLE AND UBLl
DO 900 K=1,9
Kl =K-1
ARG1 =Kl*P I/8.0
ARGZ=ARG'1+ATAN B/ B+APM!!+ Zl
H=�.0+2.0*B/APM+2.0" B/APM!**2!
UBLl K!=COS ARGl!-COS ARG2!/ SQRT k!*EXP�1!!

900 CONTINUE
50 FORMAT F8.2,9E11.2!

WRITE{3,50! APM, UBL1 N!,N=1,9!
1000 CONTINUE

60 FORMAT //////!
'WRITE �,60!

2000 CONTINUE
CALL EXIT
STOP
END

LITY

',E9.2!
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C CALCULATION OF DISSIPATION RATE/UNIT WIDTH OF WAVE ENERGY, ATTENUA-
C TION CONSTANT AND MAX BOTTOM SHEAR STRESS-CONSTANT WATER AND BED
C DEPTH AND THICKNESS
C VARIABLES-WL,A,D,H,PM, C =CONST/SQRT PM!--DISCRETE DATA-DIMENSIONAL
C DF~DISSIP RATE IN FLUID REGIME
C DBL= " " IN BOUNDARY LAYER
C DPB= " " IN POROUS BED
C DT~ TOTAL DISSIP RATE
C SSO= BOTTOM SHEAR STRESS
C ATC=ATTENUAT ION CONSTANT
C WL=WAVELENGTH,A AMPLITUDE,0=DEPTH,H BED THICKNESS,PM PERMEABILITY
C T~PERIOD OF WAVE
C DFI,DBLI,DTI,SSOI,TI=QUANl'ITIES FOR IMPERMEABLE CASE
C C=SURFACE PARAMETER,DV~DYN VISCOSITY. G~GRAV ACC,ON~DENSITY
C INVERSE OF BI AND B IS THE BOUNDARY LAYER THICKNESS,
C UO=POTENT!AL VELOCITY AT THE BOTTOM
C RE=WAVE REYNOLDS NUMBER
C CG=GROUP VELOCITY
C CP~PHASE VELOCITY

1 DIMENSION WLA�0!,AA�0!,DA�0!,HA�0!,PMA�!,CA�!
CTNH WD!=COSH WD!/SD
PI=3.14

2 FORMAT�F8.3!
3 READ�,2!DV,DN,G
4 FORMAT ' DV=',F4.3,5X,' DN=',F5.3,5X,'G~',F5.1,//!

MR!TE�,4!DV,DN,G'
C READ IN THE NUMBER OF COMPONENTS OF EACH ARRAY

5 FORMAT�18!
READ�,5! Ml, M2, M3, M4, M5, M6
V=DV/DN

C REAO IN DATA ARRAYS
6 FORMAT 8FIO.Z!

READ�,6! WLA I!,I=1,M1!, AA J!,J=1,M2!, DA K!,K=1,M3!, HA L!,L=1,
2M4!, CA N!,N=l,M6!

22 FORMAT�F20.8!
READ�,22! PMA M!,M~1,M5!

C DO LOOP FOR WL
7 DO 2000 I=1,Ml

WL=WLA I!
WN"-2~PI/WL

C AMPLITUDES HAVE 1-1 CORRESP, WITH WL, THEREFORE NO 00 LOOP FOR A, SET
J=I

A=AA J!
AWN=A'WN

C NESTED DO LOOP FOR D
8 DO 2000 K=1,M3

D=DA K!
AD=A/0

C NESTED DO LOOP FOR H
9 DQ 3000 L=l,M4

H=HA L!
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C NESTED DO LOOP FOR PM
10 DO 3000 M=1,M5

PM~PMA M!
C NESTED DO LOOP FOR C WHICH IS PROPORTIONAL TO 1/SQRT PM!

11 DO 3000 N=l,M6
C=CA N!
WD=MN*D
MH=WN*H

S D=S! NH  WD!
CH-COSH WH!
TD=TANH WD!

C CALCULATE UNKNOWNS FOR IMPERMEABLE CASE, TI,SSOI,DFI,DBLI,DTI,ATCI
C ONLY DO THIS WHEN D CHANGES, SO

IF L*N~M .GT. 1! GO TO 25
TI=SQRT�.0*PI WL~CTNH WN*D!/G!
FI=2*PI/TI
8 I=SQRT  F I/ �. 0*V! !
DFI=-2*P I*DV* A+F1 ! * 2*CTNH MN*D!
DBL I =- DV*B I*ML* A*FI/ �*SD! ! **2*2

C DTI=TOTAL DISSIP
DTI=DFI+DBL I
UO=A"FI/SD
RE=UO*4.6/ BI"V!

C E=TOTAL MECHANICAL ENERGY PER UNIT WIDTH
E=DN*G*WL~A*"2/2.0
ATCI~ DTI/�*E!
SSOI ~BI*DYE*FI*SQRT�. 0!/SD
AFI2=DF I/FT I
ABLI2=DBL I/DTI
SSO I 2 =S SOI /   DN*UO*UO !

1 2 FORMAT ///, 2X, ' WL = ', E10. 3,2X, ' A= ', E10. 3, 2X, ' D= ', E10. 3,2X, ' B I = ', E10
2. 3, 2X, ' A WN-" ', E10. 3, 2X, ' A 0= ', El 0. 3,2X, ' UO= ', E10. 3,2X, ' RE= ', E10. 3!
WRITE�,12! ML -A, 0, B I, AWN,AD, UO, RE

19 FORleT�X, ' IM! ERMEABLE CASE',]OX, ' TI=',8X, 'SSOI=',6X,'DFI=',7X, 'DB
2l I=',6X,'DTI=',7X,'ATI='!
WRITE�,19!

20 FORMAT�5X,E9.3,5E11.3!
WRITE �,20! TI, SSOI, DFI, DBI I, DTI,ATCI

30 FORMAT /! 2X, 'PERMEABLE CASE' !
WRITE�,30!

21 FORMAT�X,'H=' 6X,'PM=',8X,'C=',5X,'T=',9X,'SSO=',7X,'DF~',8X,'DBL
2=',7X,'DPB=',7X,'DT=',8X,'ATC=',8X,'CG=',8X,'CP='!
WRITE�,» !

C CALCULATE UNKNOWNS T,SSO,DBL,DF,DPB,DT,ATC,FOR PERMEABLE CASE
C SINCE THE EQN FOR T IS NONLINEAR AND TRANSCENDENTAL EVEN WHEN
C C»B, TI MILL BE USED IN THE CALCULATION OF 8 IN THE EXPRESSION FOR T

25 Cl =C*C+2.0*B I*C+2. 0*B I*B I
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C2 C C* WN/BI! *2/2+TD TD-WN*TC/BI!+2. 0* BI~TD!~2+2,0*BI TO*TO*C
C3={WN~C-2.0* C*BI+BI*BI ! «TD!/ WN*C+2.0"BI BI*TD!
C4=  WN*C~TD-2. 0*  C*B I+8 I*8 I ! ! /  2. 0*BI*B I+WN C~TD!
ARGD=ATAN C3!-ATAN C4!
T=SQRT{2*PI'%L/G*SQRT C1/C2!!*COS ARGD/2!
F=2+P I/T
B=SQRT { F/ {2*V! !
Q1 =2+A*F*C*WN*B*DV/SD
Y1=2. 0*WN* C+B!
Z1=-2WN*B

SSO~Q1*SQRT�.0/ Yl**2+Z1**2!!
SS02=SSO/ DN*UO*UO!
DF=DFI

DBL=-DV*B~L* A*F/SD!*2/�*�+2*e/C+2* e/C! 2!!*2
DPB=-�*PI'WL~A/ T+T*SD!!**2*PI*PN~DN/V*TANH WN*H!
DT=DF+DBL+DPB
ATC=DT/�.0*E!
AF2=DF/DT
ABL2=DBL/DT
AP82=DPB/DT
CP~WL/T
CG=CP*�.0+2 0"WN*D/SINH�.0*WN*D!!/2.0

27 FOPPIAT E9.2,E't0.2,F9.2,9E11.3!
WRITE�,27!H,PN,C, T,SSO, DF, DBL,DPB, DT,ATC,CG,CP

3000 CONTINUE
1000 CONTINUE
2000 CONTINUE

CALL EXIT
STOP
END
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C PROGRAM TO CALCULATE FLUID AND BED STREAMFUNCTION VALUES AT VARIOUS
C DEPTHS AND PHASES
C D=DEPTH OF WATER,H=DEPTH OF BED,V=KINEMATIC VISCOSITY,A AMP,WL=WRVE-
C LENGTH, PM=PERMEABIL ITY,APM=BOUNDARY CONDITION PARAMETER,SFW~STREAM-
C FUNCTION FOR FLUID,SFB~STREAMFUNCTION IN BED

DIMENSION SFW�0!,SFB�0!, SFBL�0!
P I=3.141592
G=980. 0
V=O. 01
D=1300. 0
WL=10000.0
H=700.0
PM=0.000001
APM~100.0
A=100.0
N=130
M=8
Q=M*1.0
WN=2*P I/WL
T=SQRT�, 0*PI� "WL/  G*TANH WN*D! ! !
F=2*P I/T
B=SQRT F/�*V!!
SD=SINH WN*D!
CH=COSH WN~H!
ARG2~ATAN�.0/ APM/B+1.0!!

1 FORMAT /,3X, ' STREAMFUNCT ION � WATER' !
WR!TE�,1!

2 FORMAT /,3X,'Z=',10X,'0',8X,'22.5',8X,'45',8X,'67.5',8X,'90',7X,'1
212.5',7X,' 135',7X,' 157.5',7X,''l80 DEGREES' !
WRITE�,2!

C N=¹USED TO PARTITION DEPTH,M=¹ USED TO PARTITION WAVELENGTH
C DO LOOP FOR DEPTH

N1=N+1
DO 1000 Kl=l,N1
K= Kl -1
Z= D- K*D/N

C DO LOOP FOR PHASES AND SFW
Ml =8+1
DO 800 L=l,M1
R=L-1.0
ARGl =P I*R/Q

C SINCE THE BOUNDARY LAYER IS THINNER THAN D/N, NEED TO INCLUDE ITS
C EFFECTS AT Z=O ONLY

!F Z. GT. 0! GO TO 90
C=SQRT� 0+2.0"B/APM+2.0* B/APM!~2!
SFBL L!=A*F*COS ARGl+B*Z+ARG2+PI/4.0!/ SD*C~B*1.4!
SFW L!=-A*F/SD" SINH WN*Z!~COS ARG1!/WN-COSH WN*Z!*COS ARG1+PI/4!/

2 B*SQRT�+4*B/APM+� B/APM!+*2!!!+SFBL L!
GO TO 800
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90 S FW L! =-A*F/SD~ S INH WN*Z! *COS ARG1! /WN-COSH  WN*Z! *COS  ARG1+P I/4! /
2 B~SQRT�+4*8/APM+� 8/APM!* 2! ! !

800 CONTINUE
801 FORMAT F8.2.9E11.2!

WRITE�,801! Z, SFW L!,L 1,M1!
1000 COiVTINUE

C NOW FOR SFB
10 FORMAT /,3X, 'STREAMFUNCTION--BED',/!

WRITE�,10!
C DO LOOP FOR BED DEPTH
C NB=I OF VALUES OF Z IN THE BED

NB=70
NBl=NB+]
00 2000 Kl=l,NB1
K=K1-1
Z=-K*H/NB

C 00 LOOP FOR PHASES AND SFB
DO 1800 LL=1,M1
R2=LL-1.0
ARG4=PI~R2/Q
SFB LL!=-A*F*F*PM*SINH WN* Z+H!!*SIN ARG4!/ WN*V"SD*CH!

1800 CONTINUE
1801 FORMAT F8.2,9E11.3!

WRI TE�,1801 ! Z, SFB LL!,LL-1,M1!
2000 CONTINUE

CALL EXIT
STOP
END
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amplitude
constants

a

Al Al A2

b
«bl

81, B2

constant
phase speed
constant
friction coefficient

group velocity

constant 2.7]8 ~ ~ ~
energy

constant

c

C C
Cf
C

d
d
D

D,D2

bl

Df

pb

boundary layer parameter
subscript denoting boundary layer
constants

depth of water
fluid excursion length
grain diameter

constants

boundary layer dissipation
potential flow dissipation

porous bed dissipation

Fourier sine transform

acceleration of gravity
function

bed depth, gap thickness
wave height

, subscript denoting impermeable bed
or initial condition

constant



wavelength

cons tant

p'ps p ress ure

time
period

U U

U U u %U

f ri c ti on ve 1 oci ty

horizontal coordinate

vertical coordinate
roughness length

z

ZO

k k K K

Ql
Qz
Q.Q;

r

Re
Re

u*
b

U

W gw ~W
s

wave number
von Karman's constant
permeability
eddy viscosity

subscript denoting the bottom

seepage velocity, horizontal

seepage velocity, vertical

horizontal discharge

Fourier transform parameter
Reynol d' s number
critical Reynold's number

subscript denoting sediment

velocity vector

horizontal velocity components

max horizontal potential velocity at bottom
vertical velocity components
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Q* Q

p p

boundary condition parameter
constant

attenuation coefficient

circulation

boundary layer thickness

porosity

expansion parameter

parameter

surface displacement

porous bed boundary layer parameter
angle

constant

dynamic viscosity

kinematic viscosity
constant

constant = 3.14 ~ ~ ~

density

frequency

velocity potential

fractional increase in discharge
phase angle

stream functions

angle

constant




